NET-VISA improvements for regional and aftershock event identification at the IDC AGU 2018: S43B-06

Nimar Arora (Bayesian Logic, Inc.) Stuart Russell (Bayesian Logic, Inc. & Berkeley) Ronan Le Bras, Radek Hofman -- CTBTO

NET-VISA is a ...

• Generative Model

- For events
- For true detections caused by events at seismic stations (up to 14 phases)
- For noise detections at stations
- For coda detections generated in turn by large true detections
- Based on physics
- Learning Engine
 - Learns the parameters for the generative model from the data
- Inference Engine
 - Given the detections at all the stations predicts
 - all the events
 - the association of events to detections
 - Event hypothesis is based on the probability that an event occurred, and not on any hard rules
 - Based on a process to generate candidate events and then refine them in a series of "moves"

History and Current Status

- Initial research started in 2009 based on outreach efforts by CTBTO
- Numerous analyst evaluations, studies have been performed by multiple independent entities
- Rough numbers: 88% Overlap with LEB and 50% Inconsistency with LEB
- Operational Deployment in January 2018 as a post-processing button that pulls in additional events missed by GA3
- Responsible for 10% of all REB events beginning mid-2018.
- Next:
 - Fully independent pipeline in progress
 - Inclusion of hydro and infra in operations
 - Heading to NDC-In-A-Box

Three reasons why an event may not be built

1. The model doesn't propose a candidate event close enough to a true event.

- This is often a computation cost issue.
- 2. The model assigns a higher probability to the associated arrivals as noise/coda rather than from the event.
 - This is because we are not modeling some important aspect of the physics of event formation/detection.
- 3. The arrivals from an event are not automatically detected by DFX.
 - NOTE: This is beyond the scope of NET-VISA, currently.

Regional events

- Built <u>primarily</u> with detections at stations less than 20 degrees away
- Typical phases -- Pn, Pg, Sn, Lg
- Body-wave magnitude (m_b) is not computed for these events.

Three reasons why an event may not be built

- 1. The model doesn't propose a candidate event close enough to a true event.
 - This is often a computation cost issue. --> Main problem with missed regional events!
- 2. The model assigns a higher probability to the associated arrivals as noise/coda rather than from the event.
 - This is because we are not modeling some important aspect of the physics of event formation/detection.
- 3. The arrivals from an event are not automatically detected by DFX.
 - NOTE: This is beyond the scope of NET-VISA, currently.

Candidate Proposal -- Invert arrivals

Candidate Proposal -- Perturb Inverted arrivals

Arrival 2

Candidate Proposal -- Keep best inverted event

Associated Arrivals

Arrival 1

Candidate Proposal -- Improve best event

Candidate Proposal -- Perturb Regional Arrivals

At regional distances the perturbation finds events very close together.

Arrival 1

Candidate Proposal -- Perturb Regional Arrivals

At regional distances the perturbation finds events very close together.

X

Arrival 1

Candidate Proposal -- Perturb Regional Arrivals

The new perturbation for regional arrivals searches in a grid around the inverted arrival.

Summary of Improvements to Proposal

- Search in a small space-time ball around the inverted arrival for regional arrivals (distance less than 20 degrees)
- Also do a uniform search over the whole earth using a sparse 5 degree grid and a simplified model.
 - The uniform proposer is very CPU intensive, and so we have to currently limit the grid size as well as the model.
- Infer the inverted event magnitude rather than attempt all magnitudes
 - \circ This actually gives runtime improvements as well
- Ignore the coda model for the proposal phase.
 - This causes fewer detections to be classified as false arrivals, and hence more events are built.

Results for 2013 with LEB as reference

Overlap with LEB by m_b

Matching Criteria - 2 common associations

3.6 3.5		Overlap	Inconsistency
	NET-VISA v 2.3.6	90.5 %	47.8%
	NET-VISA v 2.3.5	89.3%	43.4%
	SEL3 (GA)	70.6%	42.3%

ISC events not linked to IDC

2013 <u>Comprehensive</u> ISC bulletin -- 379432 events Matching Criteria - 2 degrees 10 seconds

Bulletin Name	Overlap	Distance Error (km)
NET-VISA v 2.3.6	6341	55.9
NET-VISA v 2.3.5	3482	59.4
SEL3 (GA)	1007	51.9
LEB	1993	43.8

Max Arrival Distance of Events

New Regional Events

New Regional Events in v2.3.6

Three reasons why an event may not be built

1. The model doesn't propose a candidate event close enough to a true event.

- This is often a computation cost issue.
- 2. The model assigns a higher probability to the associated arrivals as noise/coda rather than from the event.
 - This is because we are not modeling some important aspect of the physics of event formation/detection. --> Main problem with missed events in aftershocks of large events
- 3. The arrivals from an event are not automatically detected by DFX.
 - NOTE: This is beyond the scope of NET-VISA, currently.

Detection Probability in NET-VISA

Detection probability is learned from

- Body-wave magnitude
- Event depth
- Distance between the event and the station
- Phase label
- Station name
- If a large number of stations with high probability of detection for an event don't detect said event then the probability that the event is real becomes low!
- Existing model doesn't account for real-time conditions at the stations

Effect of Noise on Detections after Tohoku

Change to Detection Probability

CTBTO is now collecting real-time noise level at each station

- Average energy levels collected in 1 minute intervals
- For array stations the median across the array is computed
- Reduce the effective body-wave magnitude of the event at a station if the station is noisy
- Learn the historic noise levels for each station
- Reduce magnitude by
 - **1** if noise above P95
 - .5 if noise between P90 P95
 - .25 if noise between P80 P90

New Detection Probability under noise

Reference Bulletin: LEB. Time Range: 2011/3/11 - 2011/3/12

Summary

- Performance of NET-VISA for regional events not at par with tele-seismic events.
- Root cause was related to candidate proposals for regional events.
- LEB-based analysis and ISC-based analysis both confirmed an improvement in regional events
- A number of events in the aftershock sequence of large quakes were being missed because of noise-saturation at stations
- New real-time noise data together with model improvements helped to recover these events