

Progresses with the IDC Infrasound system

Pierrick Mialle, Seismic-Acoustic Officer, CTBTO/IDC Nimar Arora, Bayesian Logic, USA And colleagues from the International Data Centre (IDC)

Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization Provisional Technical Secretariat Vienna International Centre Vienna, AUSTRIA

What is the Comprehensive Nuclear-Test-Ban Treaty (CTBT)?

The CTBT is an **international treaty** that **bans all nuclear explosions, by anyone, anywhere, for ever:** 183 States have signed, 164 ratified.

Not yet in force – needs action

CTBTO/IDC

4 Monitoring Technologies

Seismic: 170 Listening underground

Hydroacoustic: 11 Listening to the oceans

Infrasound: 60 ←----→ Listening to the atmosphere

Radionuclide: 80 ←----→ Sniffing the atmosphere for radiation

CTBTO/IDC

6th announced nuclear test by DPRK on

3 September 2017

→ A **functioning system** that swiftly, reliably and precisely detected all six DPRK declared nuclear tests (2006 – 2017)

2017 event information (REB*)

Date: 3 September 2017

Origin Time:

03:30:01.08 UTC \pm 0.18 seconds Latitude: 41.3205 degrees North Longitude: 129.0349 degrees East Approximate Location Accuracy: \pm 6.7 km (109 km2) Depth: 0.0 km (fixed) Body Wave Magnitude mb (IDC): 6.07 Number of SHI Stations Used: 125 Issued: 5 September 2017 17:40:22 UTC

(within Entree Into Force timeline)

*Reviewed Event Bulletin

CTBTO/IDC

CTBTO/IDC

PUTTING AN **D**^{LI} END TO NUCLEAR EXPLOSIONS

6th announced nuclear test by DPRK on

3 September 2017

IDC Infrasound results for the DPRK event:

- I45RU (Ussuryisk, 400km): Seismic & infrasound detections associated to automatic and interactive products.
- I44RU (Kamchatka, 2500km): Infrasound detection.

Fusion of waveform technologies at IDC helps to improve confidence and accuracy

S Ev=14	801040 (oi	rid 1481278	8) 2017/09/03	03:30:01 41.32N 12	29.03E	0.0km	mb=6.1	l ml=5.2	Ell=6/5/88				
Allocat	ed to: wan	ighj <u>Infra F</u>	<u>Review</u> : none										
Arid	Sta	Delta	Phase	Arrival time	Tres	Az	Azres	Tr.Vel	Cel	CFreq	Fstat	SNR	Amp
125944164	I45RU	3.6	Pn (ISx)	2017/09/03 03:30:58	0.2	228.4	10.4	5.2 km/s	6990 m/s	1.04	26.0	6.2	0.17
125969062	I45RU	3.6	Pg (P)	2017/09/03 03:31:05	-1.1	218.1	0.1	7.5 km/s	6202 m/s				
125969061	I45RU	3.6	Lg (P)	2017/09/03 03:31:53	-2.1	216.1	-1.8	4.8 km/s	3565 m/s				
125944808	I45RU	3.6	I (I)	2017/09/03 03:48:05	-270.5	215.0	-3.0	354 m/s	369 m/s	0.94	24.2	5.8	0.26
125943937	USRK	3.6	Pn (Pn)	2017/09/03 03:30:58	-0.2	222.4	4.3	8.2 km/s	7039 m/s	1.50	206.9	3263.7	4548.94
125945982	USRK	3.6	Pg (P)	2017/09/03 03:31:06	-0.6	223.7	5.6	7.4 km/s	6151 m/s				8998.83
125944292	USRK	3.6	Lg (Sx)	2017/09/03 03:31:54	-1.5	213.1	-5.0	4.3 km/s	3546 m/s	1.00	40.6	5.6	15120.67
125944564	USRK	3.6	PKiKP (P)	2017/09/03 03:46:33	-2.0	270.0	51.9	77.1 km/s	404 m/s	1.50	17.4	5.1	3.43
126007508	USRK	3.6	LR (LR)	2017/09/03 03:32:09	0.8	213.8	-4.3	3.1 km/s	3110 m/s				3409.81
125943922	KSRS	4.0	Pn (Pn)	2017/09/03 03:31:03	0.1	12.3	-0.4	8.4 km/s	7090 m/s	2.25	32.8	7672.3	2755.32
125946868	KSRS	4.0	Pg (P)	2017/09/03 03:31:13	-0.1	14.8	2.2	6.3 km/s	6106 m/s				1970.83
125957545	KSRS	4.0	Sn (Sn)	2017/09/03 03:31:50	-1.2	354.7	-17.9	4.2 km/s	4041 m/s				838.50
125944257	KSRS	4.0	Lg (Sx)	2017/09/03 03:32:07	0.4	12.5	-0.1	3.8 km/s	3488 m/s	1.12	6.1	6.3	1418.74
125944505	KSRS	4.0	PKiKP (P)	2017/09/03 03:46:34	-1.6	309.7	-62.9	145.7 km/s	445 m/s	1.50	50.8	12.9	4.37
125945341	KLR	8.1	Pn (Pn)	2017/09/03 03:32:01	0.9	188.5	-6.0	8.8 km/s	7525 m/s			1593.6	742.21
125945348	KLR	8.1	Lg (Pg)	2017/09/03 03:34:18	-1.0	289.6	95.0	5.4 km/s	3512 m/s			4.2	1705.65
126007283	KLR	8.1	PKiKP (P)	2017/09/03 03:46:34	-1.4	296.6	102.0	24.6 km/s	911 m/s				2.86
125945356	JNU	8.3	Pn (P)	2017/09/03 03:32:02	0.0	325.1	-25.3	39.0 km/s	7584 m/s			676.9	151.11
125957656	JNU	8.3	Sn (Sn)	2017/09/03 03:33:39	0.3	352.8	2.5	6.2 km/s	4238 m/s				54.98
125957657	JNU	8.3	Lg (Lg)	2017/09/03 03:34:27	2.4	283.2	-67.2	6.4 km/s	3467 m/s				49.31
126007465	JNU	8.3	LR (LR)	2017/09/03 03:35:07	5.7	350.0	-0.4	3.0 km/s	3013 m/s				8497.19
126007520	MJAR	8.6	LR (LR)	2017/09/03 03:35:01	16.5	334.5	28.0	3.2 km/s	3181 m/s				11797.18
125944268	MJAR	8.6	Pn (Pn)	2017/09/03 03:32:06	-0.3	303.2	-3.3	8.0 km/s	7623 m/s	2.25	8.2	192.7	58.91
125944526	MIAR	8.6	PKIKP (Sv)	2017/09/03 03:46:34	-22	242.2	-64.3	42.6 km/s	965 m/c	2.25	5.2	84	1 44

IDC review bulletin (extract)

ASA 2018, Minneapolis

Page 5

DTK-GPMCC

IMS infrasound component Installation and Sustainment

2001 – 2018: 50 IMS infrasound stations certified out of 60 Latest certification: I20EC, Ecuador (December 2017)

CTBTO/IDC

ASA 2018, Minneapolis

Page 6

International Data Center

Event locations

IDC bulletins for waveform technologies (Seismic/Hydroacoustic/Infrasound), event location for period:

Since February 2000

IDC bulletins for infrasound technologies (since infrasound are in IDC Operations), event location for period:

Since February 2010

Over 580,000 REB events

Over 22,000 LEB infrasound events

REB and LEB are IDC products. REB: Reviewed Event Bulletins - LEB: Late Event Bulletins

CTBTO/IDC

IDC bulletin production Operations processing – current

Processing pipeline currently in IDC Operational (and test) environment

Infrasound data

IDC bulletin production IDC re-engineering

Infrasound

data

CTBTO/IDC

plugins and tools for SH

I – Station ProcessingIII – Interactive review

DTK-(G)PMCC – software evolutions

[Cansi, GRL, 1995]

- PMCC* algorithm reorganization to improve modularity and flexibility *Re-engineering*
- method incorporate a 3D algorithm to allow for accurate computation of wave attributes for nonplanar arrays - *Re-engineering*
- DTK-PMCC execution for distributed computation on multi-core computers IDC requirement
- DTK-GPMCC evolved to integrate communication with single-station detection visualization software (DTK-Diva) NDC-in-a-box, distributed to CTBTO users since July 2016

IDC integration

- real-time processing in development environment
- full integration to be completed in 2018

						Site Mar	nager						<u>.</u>
Array Ar cometry Er	ray ror	Re	Array							Date	۲	Now O All	C
elect Box	- 4	Sites											
	l^ r	Net 🖍	Array	Sta	Alias	RefSta	dnorth	deast	Latitude	Longitude	Ele	v OnDat	e OffDate
> 118DK			13167	131111	131111	13111	0 177012	0.0283	50.4086	58 0344	0.367	1 200613	1 Now
> 119DJ			IJIKZ	131111	151111	JILI	0.177912	-0.0205	30.4000	50.0544	0.507	* 200015	14044
> 122FR	(CUR_INF	131KZ	I31H2	I31H2	131L1	0.066717	0.255124	50.4076	58.0384	0.367	3 200613	I Now
▶ 123FR	0	CUR INF	131KZ	I31H3	I31H3	131L1	-0.22239	0.148822	50.4050	58.0369	0.367	200613	1 Now
▶ 124FR				10414		0.0001	50 1000	50.0335	0.000				
▶ 126DE		LUK_INF	131KZ	131H4	131H4	131L1	-0.111195	-0.0921	50.4060	58.0335	0.368	200613	1 NOW
▶ 127DE	0	CUR_INF	131KZ	I31L1	131L1	I31L1	0	0	50.4070	58.0348	0.369	4 200613	1 Now
▶ I30JP			121/7	1211.2	1211.2	12111	0 700529	0.040620	50 4122	59 0492	0.269	5 200612	1 Now
D I31KZ			IJIKZ	IJILZ	IJILZ	IJILI	0.700520	0.949029	50.4155	50.0402	0.500	200013	14044
D 132KE	= 4	Sensor	s										
D I34MN													
D 135NA		Sta ^	Chan	Srate	Sensitivity	Inst I	pe Rsp Type		Rsp File			OnDate	OffDate
▶ 136NZ		31H1	BDF	20	9.5367e-05	MB2005	PAZ		./.		2002335		Now
▶ 137NO		31H2	BDF	20	9.5367e-05	MB2005	PA7		1.			2002335	Now
▶ 139PW		o a · · · de			5.555.6 05	1102003					2002000		
↓ 140PG		31H3	BDF	20	9.5367e-05	MB2005	PAZ		./.			2002335	Now
▶ 141PY		31H4	BDF	20	9.5367e-05	MB2005	PAZ		.1.			2002335	Now
▶ 142PT													
P 143RU		3111	RDF	20	9.536/e-05	MB2005 PA			.1.			2002335	Now
P 144KU	- I	31L1	LDA	1	0.1	MB2005	PAZ		.1.			2002335	Now

↑DTK-GPMCC station manager

DTK-GPMCC main widow \rightarrow

CTBTO/IDC

II – Network processing NET-VISA origin

NET-VISA Network Processing Vertically Integrated Seismic Analysis*

1. Initial Research (2009-2010)

Towards the development of a Bayesian inference system (to replace legacy software, GA)

- 2. Software Development (2011-2016)
 - a. Seismic
 Seismic model development (2011)
 Continuous seismic model improvements
 - b. Hydro-acoustic Introduction of Hydro-acoustic processing (2013)
 - c. Set up a framework for bulletin comparison (2013)
 - d. Pipeline processing (2014-2015)
 Semi-continuous single pipeline processing on OPS data
 Simulation of full pipeline processing (data made available to Member States)
 - e. Infrasound Introduction of Infrasound processing (2015) Continuous model improvements
- 3. Operational Testing (2016-2018)

Under normal circumstances, NET-VISA produces a bulletin more complete and accurate than IDC's automatic bulletin

[Arora et al., BSSA, 2013]

II – Network processing Net-VISA for infrasound

NET-VISA Event Formation Criteria

An event is real if the probability of the event occurring and generating its associated detections and mis-detections is higher than the probability of those same detections being generated by noise (including repetitive clutter) sources.

Infrasound specificities

- **Static prior** using a whole year's worth of data (built with event location and detection rate prior)
- **Clutter model** to avoid building events from long-lasting local sources
- **Disentangling** seismo-acoustic vs. pure infra associations
- Identified minimal set of **infrasound detection features** (using back-azimuth, celerity, trace velocity, energy, frequency)

Difference between Infrasound and Seismic technologies

- Prior on number of events artificially inflated (vs learned from data in seismic)
- Event time is uncertain due to dynamic of the atmosphere
- Nuisance (N) phases at infrasound stations not considered

Net-VISA for infrasound Static prior & clutter model

Static prior Detection probability, the first element of the model (learned empirically)

Distributions obtained from 2012 interactively reviewed events (LEB):

- Celerity
- Noise phases proportion per stations
- Centre frequency of associated phases

Clutter model

 Example: I31KZ (Kazakhstan) – a rather "typical" station

Network processing NET-VISA event formation

- LEB overlap for pure infrasound event from GA 24.7% to NET-VISA 46.5%
- Inconsistency high 85.3% but reducing \rightarrow fewer false events while keeping miss event rate
- 90% reduction in spurious seismo-acoustic associations

END TO NUCLEAR

EXPLOSIONS

CTBTO/IDC

Network processing Event formation - GA

SEL3 bulletin 2013 54,327 events

CTBTO/IDC

Interactive review results

(LEB)

LEB bulletin for 2013 for all waveform technologies: 42,782 events

CTBTO/IDC

Events from NET-VISA for 2013 Infrasound events vs SH events

(with NET-VISA 2.2.48)

NET-VISA bulletin for 2013: 62,487 events total, with 3,383 events containing infrasound phases CTBTO/IDC ASA 2018, Minneapolis Page 17

Events from NET-VISA for 2013 infrasound events by types

Green 1I – Blue 2I – Red at least 3I

(with NET-VISA 2.2.48)

NET-VISA bulletin 2013 Events with infrasound phases 3,383 events

CTBTO/IDC

Station impact to global infrasound

bulletin

 \rightarrow Overall better agreement between NET-VISA and LEB

(with NET-VISA 2.2.48)

CTBTO/IDC

Event comparison for 2013 LEB vs NET-VISA

(with NET-VISA 2.2.48)

NET-VISA bulletin 2013 Events with infrasound phases 3,083 events vs 1,767 LEBs

Infrasound needs Areas for future developments and possible collaborations

Station processing progresses

- \rightarrow Implementation into IDC Operation
- ightarrow Continuous inclusion of new functionalities
- → Infrasound phase categorization redesign

Enhancement of Infrasound network processing

O NUCLEAR

- → Full implementation into IDC Operation and continuous improvements
- → Further refining priors and clutter model
- ightarrow Inclusion of meteorology / propagation criteria
- → Objective: improving performance of association algorithms: GA NET-VISA

Infrasound *propagation* tools

- → Benchmarking of propagation tools (possible project)
- \rightarrow Needed for special event and interactive review analysis
- → To support network processing enhancements and performance objectives

CTBTO/IDC

the comprehensive nuclear-test-ban treaty putting an end to nuclear test explosions

2010: Infrasound Monitoring for Atmospheric Studies, editors Le Pichon A., Blanc E. and Hauchecorne A.

Infrasound Monitoring for Atmospheric Studies

🙆 Sprin

2018: Infrasound and middle-atmospheric monitoring: Challenges and new perspectives, editors Le Pichon A., Blanc E. and Hauchecorne A. The IMS Infrasound Network: Status and State-of-the-Art Design, Marty et al. Advances in operational processing at the International Data Center, Mialle et al.

Infrasound and Middle-atmospheric Monitoring: Challenges and New Perspectives

Event comparison for 2013 SEL3 vs LEB

SEL3 bulletin 2013 Events with infrasound phases 5,117 events vs 1,767 LEBs