MODELLING AFTERSHOCK SEQUENCES IN NET-VISA

Nimar AroraUniversity of California, BerkeleyStuart RussellUniversity of California, Berkeley

Motivation

- Natural seismic events when observed over a long period of time exhibit distinct clustering patterns
- After a large seismic event a short-lived clustering is observed around the location of the large event
- Building a model of this clustering helps to better identify natural seismic events, and ultimately improve accuracy on man-made seismic events
- The current work aims to identify the factors which best predict the location of future seismic events

Outline

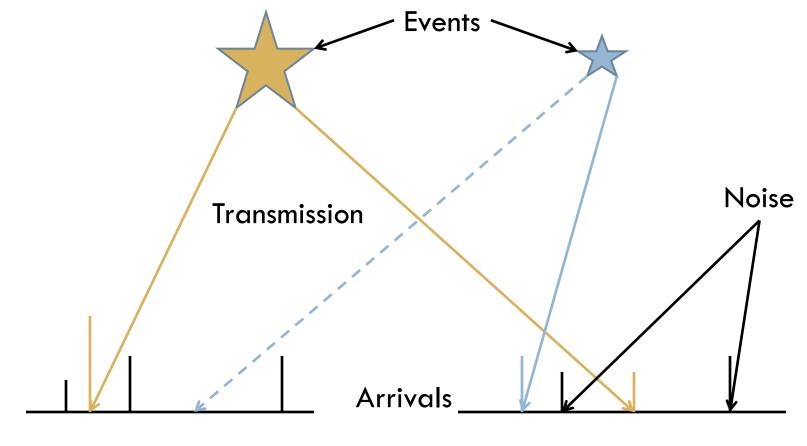
- Motivation
- □ NET-VISA overview
- Kernel-based event rate estimation
- Time decaying model
- Magnitude sensitive model
- □ Conclusion

NET-VISA overview

Probabilistic generative model of

- Seismic Events
 - Location
 - Magnitude
- Transmission of seismic waves
 - Amplitude decay
 - Velocity
- Noise
- Observed waveform parameters at the seismic stations
- Calibrated on historical data
- Infers maximum a-posteriori bulletin of all events

Generative Model



Station 1

Station 2

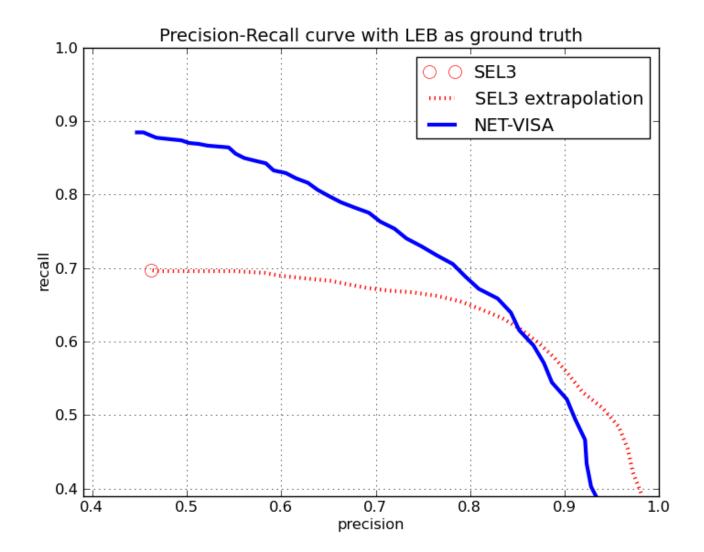
Inference

- Number of Events
- Event
 - Location (longitude, latitude)
 - Depth
 - □ m_b
 - Time
- □ Is Detected(event, station, phase) -> [true or false]
- Number of false detections per station
- Detection
 - Arrival Time
 - Arrival Azimuth
 - Arrival Slowness
 - Arrival Phase
 - Arrival Amplitude
 - Source -> [event or null]
 - True Phase -> [phase or null]

Inference Overview

- Continuously extend hypothesis by incorporating new detections
- Greedy moves improve the probability
 - 🗖 Birth
 - Re-associate
 - Relocate
 - Death

NET-VISA Precision – Recall



Recall & Error by m_b

m _b	#events	Recall		Error (km)	
		SEL3		SEL3	
			NET-VISA		NET-VISA
0 – 2	74	64.9		101	
			89.2		106
2 – 3	36	50.0		186	
			86.1		140
3 – 4	558	66.5		104	
			86.2		121
> 4	164	86.6		70	
			93.9		77
All	832	69.7		99	
			88.1		112

Recall & Error by Azimuth Gap

Gap	#events	Recall		Error (km)	
		SEL3		SEL3	
			NET-VISA		NET-VISA
0 - 90	72	100.0		28	
			100.0		39
90 – 180	315	88.9		76	
			93.7		75
180 – 270	302	51.0		134	
			84.4		137
270 - 360	143	51.0		176	
			76.9		198
AII	832	69.7		99	
			88.1		112

Outline

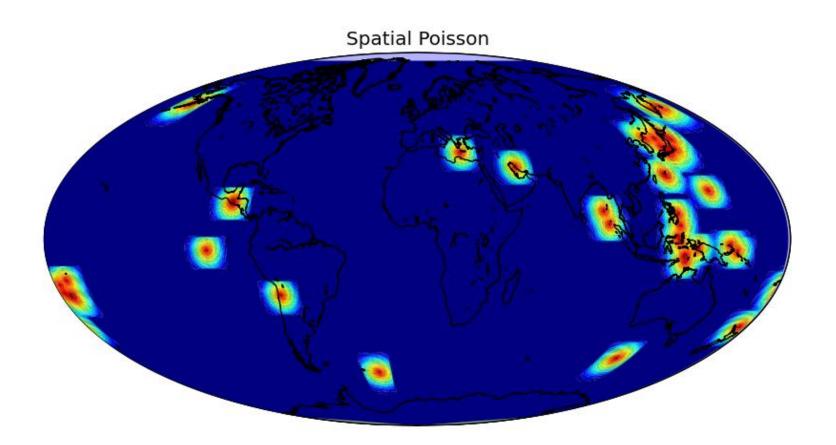
- Motivation
- NET-VISA overview
- Kernel-based event rate estimation
- Time decaying model
- Magnitude sensitive model
- □ Conclusion

Kernel Rate Estimation

 $\lambda(y) = \frac{1}{T} \sum K_{b,x_i}(y)$ i=1

x_i's are the locations of the previous events
T is the time over which all the previous events occurred

Kernel Rate-based Prior

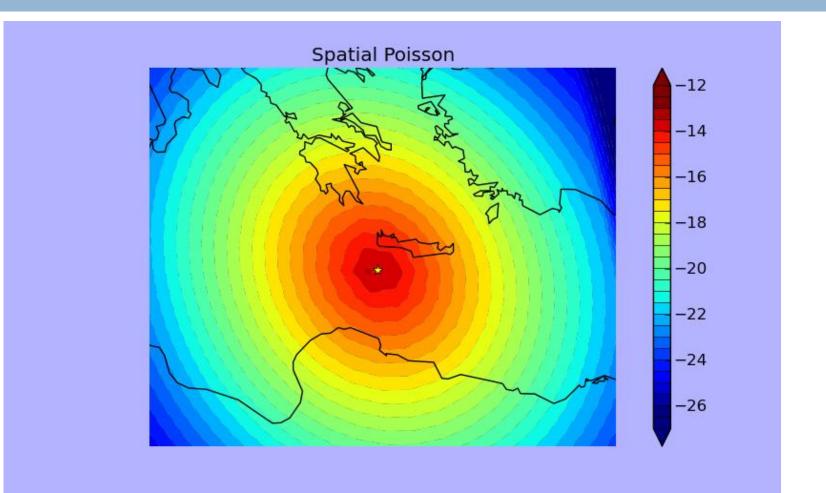


The kernel function

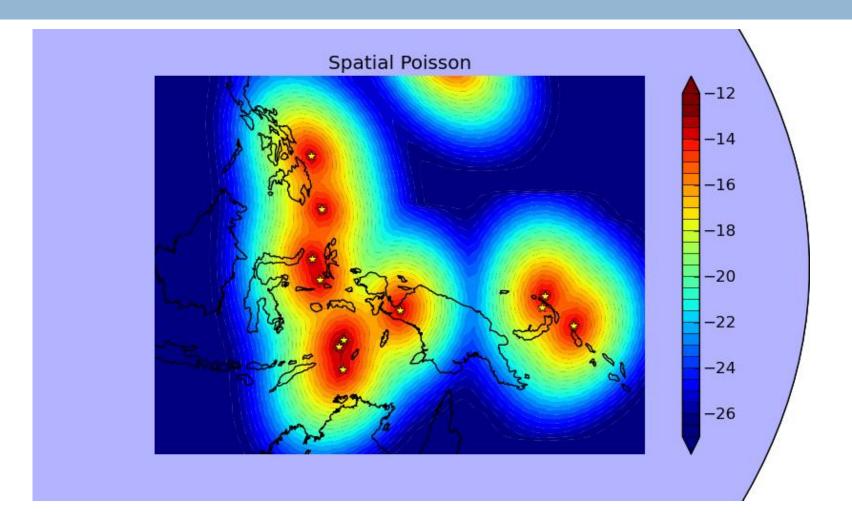
$$K_{b,x}(y) = \frac{1 + \frac{1}{b^2}}{2\pi R^2} \frac{\exp(-\frac{\Delta_{xy}}{b})}{1 + \exp(-\frac{\pi}{b})}$$

- b is the bandwidth of the kernel
- $\hfill \Delta_{xy}$ is the great-circle distance between locations x and y
- R is the radius of the earth
- Optimal b learned by cross-validation ~ 80km

The kernel function (log scale)



Sum of kernel functions



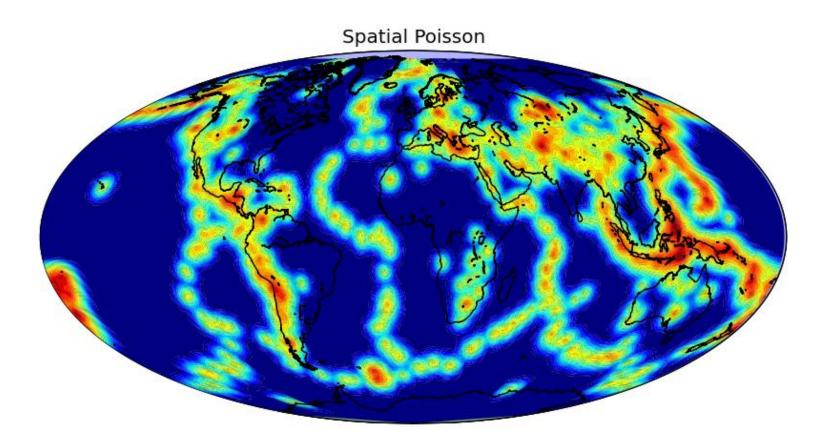
Implementation...

 Poisson rates are computed on a grid and intermediate points are intepolated
Online update for the Poisson rate

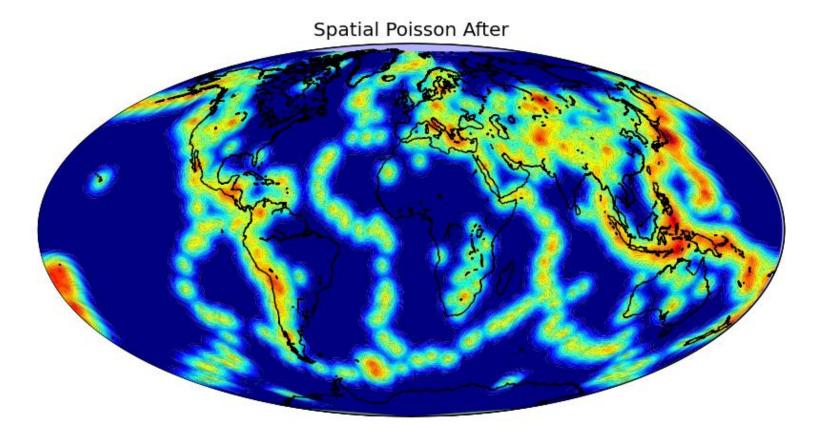
$$\mu_{n+1} = \alpha \mu_n + (1 - \alpha) x_{n+1}$$

$$\alpha = \frac{n}{n+1}$$

... after 3 months of data

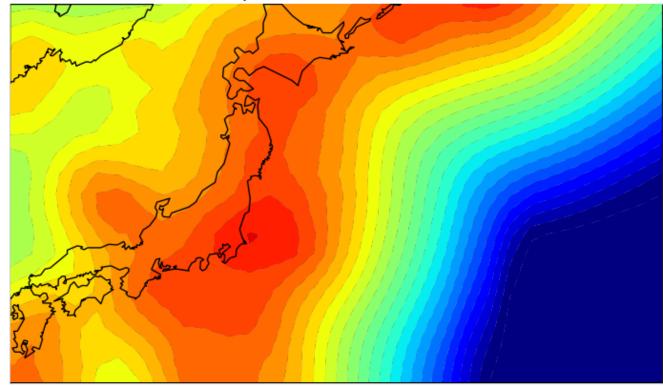


... 2 days after the Tohoku earthquake

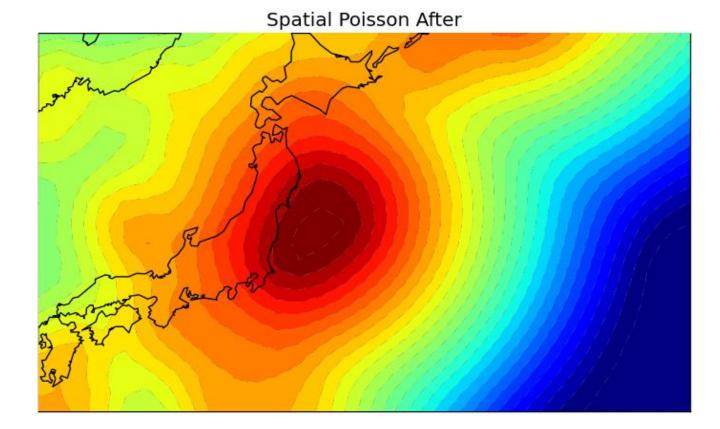


... zooming into Japan ... before

Spatial Poisson Before



... and after...



Outline

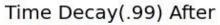
- Motivation
- NET-VISA overview
- Kernel-based event rate estimation
- Time decaying model
- Magnitude sensitive model
- □ Conclusion

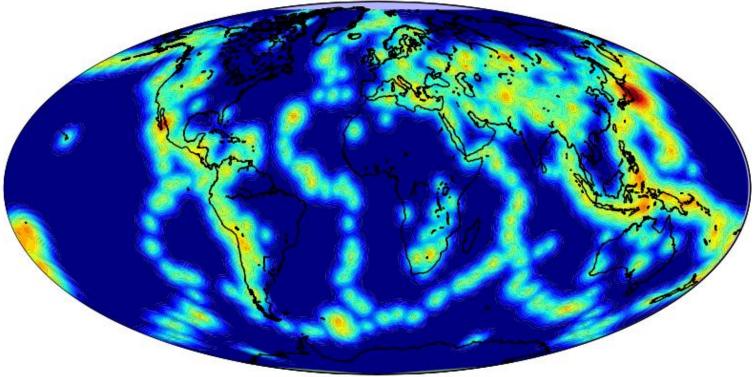
Exponential Decay with Time

$$\lambda(y) = \sum_{i=1}^{n} K_{b,x_i}(y)(1-\alpha)\alpha^{T_i}$$

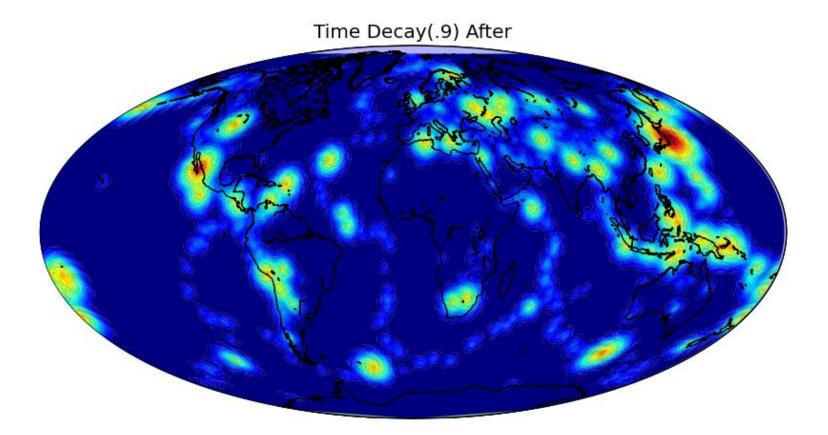
- □ T_i is time elapsed since event i
- □ alpha is the decay rate

Exponential decay (rate = .99)

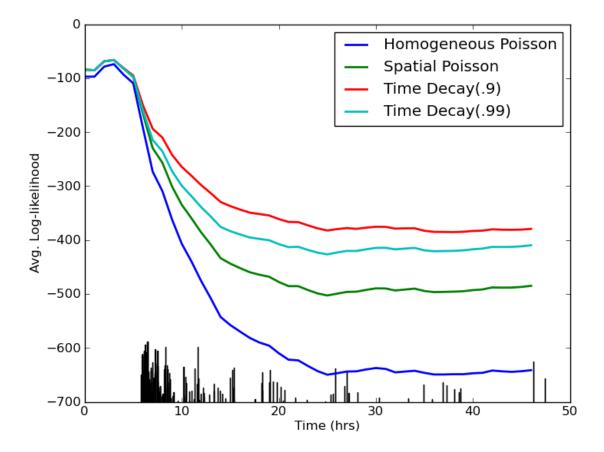




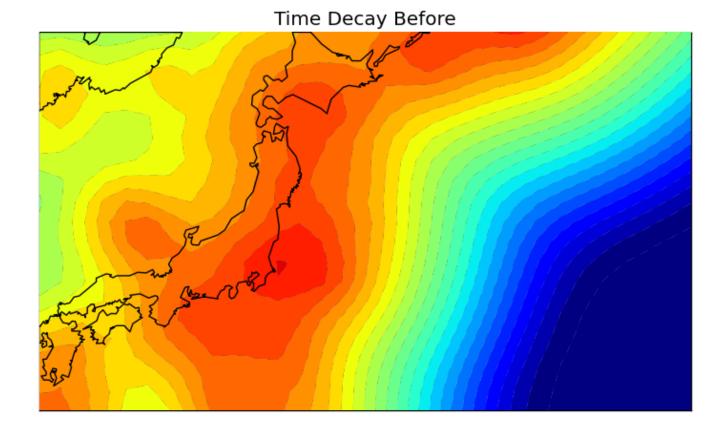
Exponential Decay (rate = .9)



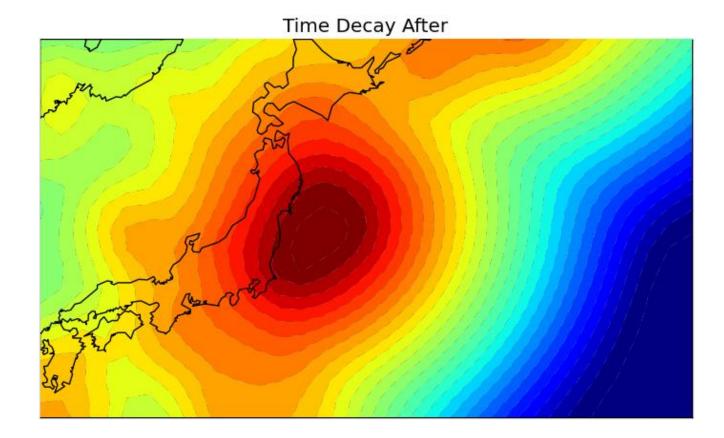
Log-likelihood on Tohoku Sequence



... before Tohoku...



... and after...



Outline

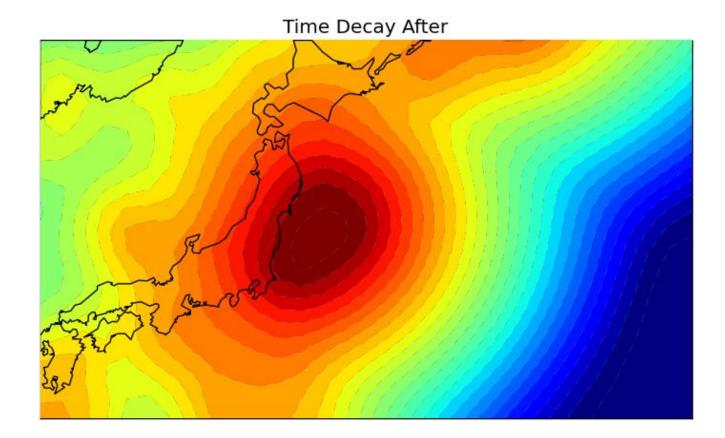
- Motivation
- NET-VISA overview
- Kernel-based event rate estimation
- Time decaying model
- Magnitude sensitive model
- □ Conclusion

Taking event magnitude into account

 $\lambda(y) = \sum K_{b,x_i}(y)(1-\alpha)\alpha^{T_i}e^{m_i-3.5}$ i=1

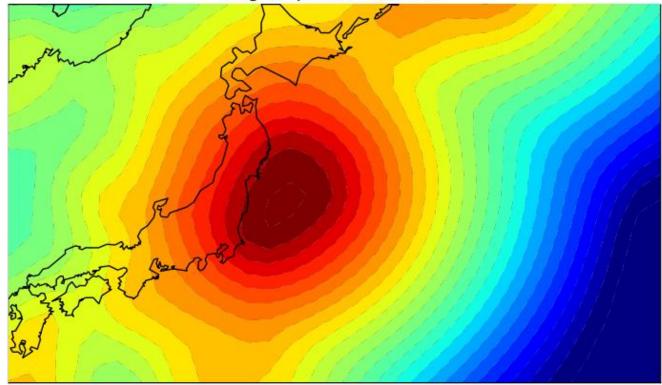
 \square m_i is the magnitude of the event i

Time decay versus...

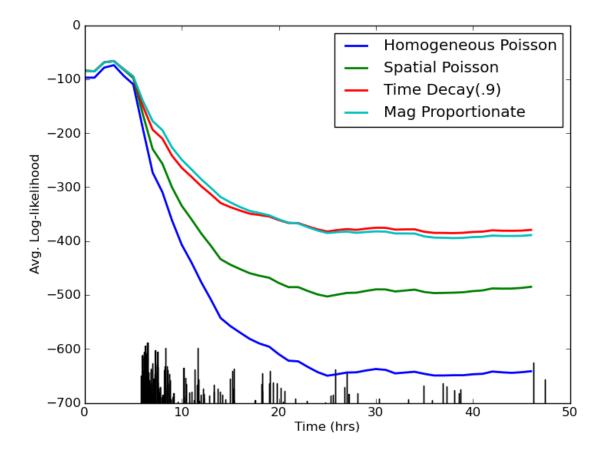


Time decay + magnitude

Mag Proportionate After



Proportional to Magnitude



Conclusion

- Events produce aftershocks with rate decaying exponentially with time
- For rate estimation, the magnitude of a large event is not as important since the initial aftershocks can be used to estimate the subsequent aftershock rate!
- Alternate approach: maintain history of recent (space and time) events for each location to compute density on demand. Allows usage of Omori's law.