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• The method of Double-differencing (Waldhauser & Ellsworth, 2000) 

relocates events using precise arrival-time difference information 

obtained through waveform matching, while considering correlated 

travel-time residuals.

• We formulate a Bayesian model with similar properties: our model 

integrates information from picked arrival times as well as arrival-

time differences, and explicitly models correlated residuals as a 

function of variation in the underlying slowness field (Rodi and 

Meyers, 2007):

• The slowness field is modeled as a Gaussian process, which induces 

an equivalent Gaussian process on the travel-time residuals. This 

connection allows inference to recover a posterior distribution over 

event locations as well as the slowness field:

• Inference is through Markov Chain Monte Carlo (Metropolis-Hastings 

w/ Gaussian proposals). 
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Background: Detection-based Bayesian monitoring

• Global seismic monitoring for the Comprehensive Nuclear-Test-Ban 

Treaty (CTBT) aims to recover the time, location, depth, and magnitude 

for all seismic events in the magnitude range of interest.

• Data from the International Monitoring System (IMS) are processed in 

real time at the International Data Centre (IDC) in Vienna. Our goal is to 

improve the sensitivity and accuracy of automated processing at IDC.

Signal-Based vs. Detection-Based Monitoring

Signal-based Bayesian monitoring CONCLUSIONS

• Prior results suggest that Bayesian monitoring is a promising technique 

for analyzing streams of parametric detections from multiple stations to 

form a global event bulletin and may be preferable to existing deployed 

methods for global association.

• Our current work, in its very early stages, is aimed at extending 

Bayesian monitoring with generative models of waveform envelopes to 

improve detection and association and performing joint inference of 

event locations and slowness fields to improve localization accuracy.
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NET-VISA is a probabilistic generative model of seismic events, their 

propagation and detection. Also, a model of noise detections.

Bayesian Double-Differencing

Results on one week of data (trained on 2.5 months)

•NET-VISA is a detection-based Bayesian monitoring system whose 

performance is limited by the classical, bottom-up, threshold-based 

detections algorithms used in station processing.

• SIG-VISA, a signal-based system, will use generative models that span 

the range from events to waveform traces. It will have several 

qualitative advantages over NET-VISA, potentially yielding a significant 

improvement in detection performance
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Bayesian monitoring with a generative approach

P(world) describes prior probability for what is (events)

P(signal | world) describes forward model 

(propagation, measurement, etc.)

Detection-based Bayesian monitoring:

P(world | f (signal)) ~ P(f (signal) | world) P(world)

where f (signal) = set of all detections

Signal-based Bayesian monitoring:

P(world | signal) ~ P(signal | world) P(world)
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0-2 74 64.9 101 86.5 101

2-3 36 50.0 186 77.8 159

3-4 558 66.5 104 86.4 115

>4 164 86.6 70 93.3 78

The model consists of various probability distributions, which include:

• A distribution for seismic event locations, which includes natural 

seismicity and manmade seismicity (assumed uniform).

• The detection probability of an event depends only on event 

magnitude, depth, and distance to station.

• The residual distribution for the travel time, azimuth, and slowness are 

mostly modeled as Laplacian distributions.
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• Bayesian/probabilistic formulation makes it 

easy to include additional inputs, such as 

arrival-time differences from waveform 

matching / cross-correlation techniques.

• Results on simulated 

data show decreased 

error in both absolute 

and relative event 

locations, as compared 

to double-differencing 

and to a baseline 

inversion which 

assumes independent 

residuals.

Image from Schaff et. al. (2004)

• A signal-based model encodes the joint distribution of the waveform traces at 
each station given the event parameters for all hypothesized events.  

• We overlay background noise models, independent for each station, with 
event-generated waveforms of the contributions of each phase type.

• A simple approach involves a low-dimensional parametric envelope descriptor 
(e.g., triangular or paired-exponential, cf. Huseby et al., 1998) whose arrival 
time, amplitude, and spread depend on event distance & magnitude:
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• Actual envelopes are not well-modeled by template + iid noise.  We model 
large-scale variation in envelope shape as the product of a mean envelope 
(magnitude and distance dependent), and a stochastic modulation signal:  

• A simple modulation model, which we will ultimately learn from historical 
data, is based on a random linear combination of Fourier basis functions:

• A basic model of envelope variation would assign each event an independent 
sampled log-modulation signal, using a Gaussian prior on the basis 
coefficients

• Envelope (or waveform) shape is highly repeatable across events with the 
same location and type. A nonparametric extension, based on Gaussian 
processes, captures correlations among event envelopes that decay with 
distance (analogous to correlation matching).

observedEventEnvelope = meanEnvelope x exp(eventSpecificModulation)
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• The rates at which correlations decay with distance will also be calibrated 
from historical training data. 
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