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NET-VISA model: variables
 Number of Events
 Event

 Location (longitude, latitude)
 Depth
 mb

 Time

 Is Detected(event, station, phase)   -> [true or false]
 Number of false detections per station
 Detection

 Arrival Time
 Arrival Azimuth
 Arrival Slowness
 Arrival Phase
 Arrival Amplitude
 Source   -> [event or null]
 True Phase -> [phase or null]
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Event Prior
 Event magnitude is given by a Gutenberg Richter 

distribution

 Depth is assumed to be uniformly distributed (0 – 700 
km)



Event Location Prior 2 deg buckets
 Simple histogram for 2 degree buckets over the surface of 

the earth. Absolute discount smoothing – similar to mixing 
with a uniform distribution



Generative Model

#stations

# false det

Detection

# events

#stations

#stations

Event

#phases
Detection

Is Detected 
= True

Transmission



Detection Model
 Logistic Regression using event magnitude, depth, and 

distance to station as basic features

 Various combinations of the basic features
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Arrival Time – Laplacian
Distribution



Arrival Azimuth and Slowness .. 
also Laplacian



Arrival Phase
 Arrival phase is a multinomial conditional on the true 

phase



Arrival Amplitude
 Log-amplitude is a linear model of event magnitude, 

depth, and travel time
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False Arrival Model
 Time, Azimuth, and Slowness are uniformly 

distributed



False Arrival : phase distribution
 Phase has a multinomial distribution



False Arrival: amplitude 
distribution
 Log-Amplitude is a mixture of two Gaussians
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Inference
 Number of Events
 Event

 Location (longitude, latitude)
 Depth
 mb

 Time

 Is Detected(event, station, phase) -> [true or false]
 Number of false detections per station
 Detection

 Arrival Time
 Arrival Azimuth
 Arrival Slowness
 Arrival Phase
 Arrival Amplitude
 Source  -> [event or null]
 True Phase -> [phase or null]



MAP Inference
 A hypothesis is a complete sequence of events and the 

detections associated to them

 Max a-posteriori (MAP) hypothesis is the single most 
probable explanation as per the model

 Easier to compare to SEL3

 Future MCMC inference can use MAP as an initializer



Inference Overview
 Continuously extend hypothesis by incorporating new 

detections

 Greedy moves improve the probability

 Birth

 Reassociate

 Relocate

 Death



Inference Example
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Inference : Reassociate Detections
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Inference : Reassociate Detections
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Inference : Relocate Events
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Inference : Death Move
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Inference : Death Move
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Inference : Move Window Forward
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Inference : Output stable events

time

e1 e3

d1

Events

Detections

d2 d4d3 d5 d6d5 d8d7 d10d9 d11 d13d12 d14

window

e5

d15



Overview
 Generative Probabilistic Model

 Inference

 Results

 Analysis

 Future plans



Analyzing Performance
Min-cost max-cardinality matching where 

edges exist between prediction and ground truth 
events within 50 seconds and 5 degrees.

 The cost of an edge is the distance between the 
events.

 Precision – percentage of predictions that match.

 Recall – percentage of ground truths that match.

 Error – average distance between matching events.

36



mb #events Recall Error (km)
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0 – 2 74
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> 4 164
86.6 70

89.6 80

all 832
69.7 99

84.6 109

Recall & Error by mb
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Precision & Recall

SEL3 extrapolation courtesy Mackey & Kleiner



Alternate Evaluation Criteria

Criteria Precision Recall Error (km)

SEL3 SEL3 SEL3

NETVISA NETVISA NETVISA

Matching, 
5 deg, 50s

46.2 69.7 99

45.6 84.6 109

5deg, 50s
48.0 70.0 98

53.4 85.2 104

250km,40s 
41.5 60.9 63

46.2 74.9 71
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All Predicted Events (LEB & SEL3)



All Predicted Events 
(LEB & NET-VISA)



Error Analysis : 1
 NET-VISA considers many more combinations of 

detections than LEB

 => Event locations tend to be different

 => New events are predicted



Additional Detections in NET-VISA
mb #events #Additional 

detections

0 – 2 64 2

2 – 3 27 2

3 – 4 465 2

>4 148 4

All 704 3



Example 1 :

Runid Orid Phase Sta Timeres Azres Slores

8 11 P ASAR 0.6 -10.8 -3

8 11 P WRA 0.4 -4.8 0.6

8 11 P FITZ 6.8 -47.1 -1.3

8 11 P TXAR 3.3 -84.9 0.9

8 11 P AFI -1.1 22.0 -2.4

8 11 P RPZ 0.6 24.6 12.8

Orid Phase Sta Timeres Azres Slores

5295573 P ASAR -1.9 -8.5 -0.2

5295573 P WRA -0.8 -2.2 0.6

5295573 P FITZ 1.2 10.2 -0.7

5295573 P CTA 1.6 -16 -0.3

LEB

NET-VISA



Example 1: Posterior Probability

Blue – NET-VISA, Yellow – LEB, Red – SEL3



Ex 2: NEIC Event (ML 3) missed by 
LEB

White – NEIC, Blue – NET-VISA, Red – SEL3



Ex 3: NEIC Event (ML 3.7) missed by 
LEB

White Star – NEIC : Courtesy ISC



Ex 4: NEIC Event (ML 2.6) missed by 
LEB

White Star – NEIC : Courtesy ISC



Ex 5: Portugal Event missed by LEB

Yellow star – LDG (French) network: Courtesy ISC



Error Analysis : 2
 A single phase may produce more than one detection

 When this occurs consistently across multiple stations 
NET-VISA hypothesizes multiple events



Error Analysis : Pseudo Phases
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Error Analysis : Shadow Events
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Ex 6: Shadow Events (LEB ML 2.9)

Blue – NET-VISA, Yellow – LEB, Red – SEL3



Ex 7: Shadow Events (mb 5.7)



Hack … Suppress Duplicates



Are these duplicates?



ISC event location from all sources

Yellow Stars : various sources for same event : Courtesy ISC
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Travel Time Corrections

Blue – positive, Red – negative residual



Current Generative Model

#stations

# false det

Detection

# events

#stations

#stations

Event

#phases
Detection

Is Detected 
= True

Transmission



Correlated Phase Detections
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Correlation between S and P travel 
times



Time Varying Station Noise Affects 
Detections and False Detections
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Others…
 Event location prior using Fisher Binghams etc.

 Model for Hydroacoustic and Infrasound detections

 Multiple detections per phase (pseudo phases)

 IDC Evaluation of NET-VISA

 SIG-VISA



Conclusion
 Generative Probabilistic Model of seismic events, 

transmission, and detection

 MAP inference for direct comparison with SEL3

 15% higher recall than SEL3 at the same precision

 Potentially more events than LEB


