Bayesian Monitoring in VISA: Results and Plans

Nimar AroraUniversity of California, BerkeleyStuart RussellUniversity of California, BerkeleyErik SudderthBrown UniversityPaul KidwellLawrence Livermore National Labs

Vertically Integrated Seismic Analysis (VISA)

Network Processing (NET-VISA)

Overview

- Generative Probabilistic Model
- Inference
- Results
- Analysis
- Future plans

NET-VISA model: variables

- Number of Events
- Event
 - Location (longitude, latitude)
 - Depth
 - m_b
 - Time
- Is Detected(event, station, phase) -> [true or false]
- Number of false detections per station
- Detection
 - Arrival Time
 - Arrival Azimuth
 - Arrival Slowness
 - Arrival Phase
 - Arrival Amplitude
 - Source -> [event or null]
 - True Phase -> [phase or null]

Generative Model

Generative Model

Event Prior

- Event magnitude is given by a Gutenberg Richter distribution
- Depth is assumed to be uniformly distributed (o 700 km)

Event Location Prior 2 deg buckets

• Simple histogram for 2 degree buckets over the surface of the earth. Absolute discount smoothing – similar to mixing with a uniform distribution

Generative Model

Detection Model

- Logistic Regression using event magnitude, depth, and distance to station as basic features
- Various combinations of the basic features

Generative Model

Arrival Time – Laplacian Distribution

Arrival Azimuth and Slowness .. also Laplacian

Arrival Phase

Arrival phase is a multinomial conditional on the true phase

Arrival Amplitude

• Log-amplitude is a linear model of event magnitude, depth, and travel time

Generative Model

False Arrival Model

• Time, Azimuth, and Slowness are uniformly distributed

False Arrival : phase distribution

Phase has a multinomial distribution

False Arrival: amplitude distribution

Log-Amplitude is a mixture of two Gaussians

Overview

- Generative Probabilistic Model
- Inference
- Results
- Analysis
- Future plans

Inference

- Number of Events
- Event
 - Location (longitude, latitude)
 - Depth
 - m_b
 - Time
- Is Detected(event, station, phase) -> [true or false]
- Number of false detections per station
- Detection
 - Arrival Time
 - Arrival Azimuth
 - Arrival Slowness
 - Arrival Phase
 - Arrival Amplitude
 - Source -> [event or null]
 - True Phase -> [phase or null]

MAP Inference

- A hypothesis is a complete sequence of events and the detections associated to them
- *Max a-posteriori* (MAP) hypothesis is the single most probable explanation as per the model
- Easier to compare to SEL3
- Future MCMC inference can use MAP as an initializer

Inference Overview

- Continuously extend hypothesis by incorporating new detections
- Greedy moves improve the probability
 - Birth
 - Reassociate
 - Relocate
 - Death

Inference Example

Inference : Birth Move

Inference : Birth Move

Inference : Reassociate Detections

Inference : Reassociate Detections

Inference : Relocate Events

Inference : Death Move

Inference : Death Move

Inference : Move Window Forward

Inference : Output stable events

Overview

- Generative Probabilistic Model
- Inference
- Results
- Analysis
- Future plans

Analyzing Performance

- **Min-cost max-cardinality matching** where edges exist between prediction and ground truth events within 50 seconds and 5 degrees.
- The cost of an edge is the distance between the events.
- Precision percentage of predictions that match.
- Recall percentage of ground truths that match.
- Error average distance between matching events.

m _b	#events	Recall		Error	(km)
		SEL3		SEL3	
			NET-VISA		NET-VISA
0 2	74	64.9		101	
0 - 2			86.5		93
2 - 3	36	50.0		186	
			75.0		138
3 - 4	558	66.5		104	
			83.5		119
> 4	164	86.6		70	
			89.6		80
all	832	69.7		99	
			84.6		109

m _b	#events	Re	call	Error (km)	
		SEL3		SEL3	
			NET-VISA		NET-VISA
0.3	74	64.9		101	
0 - 2	74		86.5		93
2 – 2	36	50.0		186	
2-3			75.0		138
3 - 4	558	66.5		104	
			83.5		119
> 4	164	86.6		70	
			89.6		80
all	822	69.7		99	
	032		84.6		109

m _b	#events	Recall		Error (km)	
		SEL ₃		SEL3	
			NET-VISA		NET-VISA
0 2	74	64.9		101	
0 - 2			86.5		93
	36	50.0		186	
2-3			75.0		138
3 - 4	558	66.5		104	
			83.5		119
> 4	164	86.6		70	
			89.6		80
all	9 22	69.7		99	
	832		84.6		109

m _b	#events	Recall		Recall		Error	(km)
		SEL3		SEL3			
			NET-VISA		NET-VISA		
0.3	74	64.9		101			
0 - 2			86.5		93		
2 – 2	36	50.0		186			
2-3			75.0		138		
3 - 4	558	66.5		104			
			83.5		119		
> 4	164	86.6		70			
			89.6		80		
all	832	69.7		99			
			84.6		109		

Precision & Recall

SEL3 extrapolation courtesy Mackey & Kleiner

Alternate Evaluation Criteria

Criteria	Precision		Recall		Error (km)	
	SEL ₃		SEL ₃		SEL ₃	
		NETVISA		NETVISA		NETVISA
Matching, 5 deg, 50s	46.2		69.7		99	
		45.6		84.6		109
5deg, 50s	48.0		70.0		98	
		53.4		85.2		104
250km,40s	41.5		60.9		63	
		46.2		74.9		71

Overview

- Generative Probabilistic Model
- Inference
- Results
- Analysis
- Future plans

All Predicted Events (LEB & SEL3)

All Predicted Events (LEB & NET-VISA)

Error Analysis : 1

- NET-VISA considers many more combinations of detections than LEB
 - => Event locations tend to be different
 - => New events are predicted

Additional Detections in NET-VISA

m _b	#events	#Additional detections
0 - 2	64	2
2 - 3	27	2
3 - 4	465	2
>4	148	4
All	704	3

Example 1 :

Orid	Phase	Sta	Timeres	Azres	Slores	
5295573	Р	ASAR	-1.9	-8.5	-0.2	
5295573	Р	WRA	-0.8	-2.2	0.6	LE
5295573	Р	FITZ	1.2	10.2	-0.7	
5295573	Р	СТА	1.6	-16	-0.3	

Runid	Orid	Phase	Sta	Timeres	Azres	Slores	
8	11	Р	ASAR	0.6	-10.8	-3	
8	11	Р	WRA	0.4	-4.8	0.6	
8	11	Р	FITZ	6.8	-47.1	-1.3	NET-VISA
8	11	Р	TXAR	3.3	-84.9	0.9	
8	11	Р	AFI	-1.1	22.0	-2.4	
8	11	Р	RPZ	0.6	24.6	12.8	

Example 1: Posterior Probability

Ex 2: NEIC Event (ML 3) missed by LEB

Ex 3: NEIC Event (ML 3.7) missed by LEB

Ex 4: NEIC Event (ML 2.6) missed by LEB

Ex 5: Portugal Event missed by LEB

Error Analysis : 2

- A single phase may produce more than one detection
- When this occurs consistently across multiple stations NET-VISA hypothesizes multiple events

Ex 6: Shadow Events (LEB ML 2.9)

Blue – NET-VISA, Yellow – LEB, Red – SEL3

Ex 7: Shadow Events (m_b 5.7)

Hack ... Suppress Duplicates

Are these duplicates?

ISC event location from all sources

Yellow Stars : various sources for same event : Courtesy ISC

Overview

- Generative Probabilistic Model
- Inference
- Results
- Analysis
- Future plans

Travel Time Corrections

Blue – positive, Red – negative residual

Current Generative Model

Correlated Phase Detections

Correlation between S and P travel

times

Time Varying Station Noise Affects

Detections and False Detections

Others...

- Event location prior using Fisher Binghams etc.
- Model for Hydroacoustic and Infrasound detections
- Multiple detections per phase (pseudo phases)
- IDC Evaluation of NET-VISA
- SIG-VISA

Conclusion

- Generative Probabilistic Model of seismic events, transmission, and detection
- MAP inference for direct comparison with SEL3
- 15% higher recall than SEL3 at the same precision
- Potentially more events than LEB