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Methods for automatically associating detected waveform features with hypothesized seismic events, and
localizing those events, are a critical component of efforts to verify the Comprehensive Test Ban Treaty
(CTBT). As outlined in our companion abstract, we have developed a hierarchical model which views
detection, association, and localization as an integrated probabilistic inference problem. In this abstract, we
provide more details on the Markov chain Monte Carlo (MCMC) methods used to solve this inference task.

MCMC (Gilks et al., 1996) generates samples from a posterior distribution π(x) over possible worlds x

by defining a Markov chain whose states are the worlds x, and whose stationary distribution is π(x). In
the Metropolis–Hastings (M-H) method, transitions in the Markov chain are constructed in two steps. First,
given the current state x, a candidate next state x′ is generated from a proposal distribution q(x′ | x), which
may be (more or less) arbitrary. Second, the transition to x′ is not automatic, but occurs with an acceptance

probability defined as follows:

α(x′ | x) = min

(

1,
π(x′)q(x | x′)

π(x)q(x′ | x)

)

It is not necessary that all the variables composing state x be updated simultaneously, in a single transi-
tion function. For example, single-component M-H algorithms, such as the Gibbs sampler, alter individual
variables in turn. More broadly, domain knowledge can be used to factor q(· | ·) into separate transition
functions for various strongly coupled subsets of variables. Under easily verifiable conditions guaranteeing
the Markov chain’s ergodicity (Gilks et al., 1996), the M-H acceptance probability defined above ensures
convergence of the Markov chain to π(x), the target distribution of interest.

The seismic event model outlined in our companion abstract is quite similar to those used in multitarget
tracking, for which MCMC has proved very effective—see, for example, (Pasula et al., 1999; Oh et al., 2009).
In this model, each world x is defined by a collection of events, a list of properties characterizing those
events (times, locations, magnitudes, and types), and the association of each event to a set of observed
detections. The target distribution π(x) = P (x | y), the posterior distribution over worlds x given the
observed waveform data y at all stations. Proposal distributions then implement several types of moves

between worlds. For example, birth moves create new events; death moves delete existing events; split

moves partition the detections for an event into two new events; merge moves combine event pairs; swap

moves modify the properties and assocations for pairs of events. Importantly, the rules for accepting such
complex moves need not be hand-designed. Instead, they are automatically determined by the underlying
probabilistic model, which is in turn calibrated via historical data and scientific knowledge.

Consider a small seismic event which generates weak signals at several different stations, which might
independently be mistaken for noise. A birth move may nevertheless hypothesize an event jointly explaining
these detections. If the corresponding waveform data then aligns with the seismological knowledge encoded
in the probabilistic model, the event may be detected even though no single station observes it unambigu-
ously. Alternatively, if a large outlier reading is produced at a single station, moves which instantiate a
corresponding (false) event would be rejected because of the absence of plausible detections at other sensors.

More broadly, one of the main advantages of our MCMC approach is its consistent handling of the
relative uncertainties in different information sources. By avoiding low-level thresholds, we expect to improve
accuracy and robustness. At the conference, we will present results quantitatively validating our approach,
using ground-truth associations and locations provided either by simulation or human analysts.
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