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WinBUGS is a fully extensible modular framework for constructing and analysing Bayesian full
probability models. Models may be specified either textually via the BUGS language or pictorially
using a graphical interface called DoodleBUGS. WinBUGS processes the model specification and
constructs an object-oriented representation of the model. The software offers a user-interface, based
on dialogue boxes and menu commands, through which the model may then be analysed using Markov
chain Monte Carlo techniques. In this paper we discuss how and why various modern computing
concepts, such as object-orientation and run-time linking, feature in the software’s design. We also
discuss how the framework may be extended. It is possible to write specific applications that form
an apparently seamless interface with WinBUGS for users with specialized requirements. It is also
possible to interface with WinBUGS at a lower level by incorporating new object types that may be
used by WinBUGS without knowledge of the modules in which they are implemented. Neither of
these types of extension require access to, or even recompilation of, the WinBUGS source-code.
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1. Introduction

WinBUGS is the current, windows-based, version of the BUGS
software described in Spiegelhalter et al. (1996b). (BUGS is
an acronym for Bayesian inference Using Gibbs Sampling.) It
is a user-friendly, ‘point-and-click’ environment that makes ac-
cessible state-of-the-art statistical methodology (Markov chain
Monte Carlo techniques) for analysis of a wide class of Bayesian
full probability models.

The conceptual design of the software is based on construct-
ing an internal representation of the probability model that is
analogous to the way in which it may be visualized as a graph-
ical model (e.g. Spiegelhalter 1998). In graphical modelling,
each quantity in the model is represented by a node and nodes
are connected by lines or arrows to show direct dependence.
The details of distributional assumptions and deterministic

relationships are ‘hidden’ to clarify the qualitative nature of the
model. Many useful properties of the model can be derived sim-
ply from this abstract representation. This has led very naturally
to an object-oriented approach to the software’s design.

Object-oriented programming involves the construction of a
hierarchical collection of type definitions, comprising a set of
concrete types at the top with various levels of abstraction be-
neath. An object is an instance of a concrete type but it may be
treated as being of a more basic type. Thus it is possible to write
very general procedures that operate abstractly on all objects –
the hierarchy is accessed at a level that is appropriate for the
purposes of the operation. In WinBUGS objects are particularly
useful for representing the various nodes in a graphical model.

WinBUGS has been designed primarily for handling directed
acyclic graphs (DAGs; Lauritzen et al. 1990, Whittaker 1990)
– graphical models where links between nodes are directed and
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cycles are not permitted. DAGs represent a series of (realis-
tic) conditional independence assumptions, which allow the full
probability model to be factorized into a product of simple local
components. Knowledge of each node’s parents, i.e. the nodes
upon which it directly depends, is sufficient to construct the
full model, and so only this information need be incorporated
into the internal representation of the model. This internal rep-
resentation is therefore analogous to the graph itself and easily
manageable however complex the model may be.

Statistical analysis of the model is conducted using vari-
ous simulation methods known as Markov chain Monte Carlo
(MCMC; see Gilks, Richardson and Spiegelhalter 1996, for ex-
ample). The primary technique is Gibbs sampling (Geman and
Geman 1984), in which at each iteration a new value for each
unobserved stochastic node is sampled from the correspond-
ing parameter’s full conditional distribution, i.e. its distribution
conditional upon all other model parameters and the data. The
factorization alluded to above allows this distribution to be con-
structed merely from knowledge of the node’s parents and chil-
dren (i.e. nodes for which the node of interest is a parent). In
this sense the Gibbs sampler is simply a sequence of local com-
putations on the graph.

The structure of the WinBUGS source-code is also analogous
to a graphical model, in that it comprises a network of locally
communicating components – a component-oriented philoso-
phy (Szyperski 1995) has been adopted. This novel software
engineering approach aims to create fully extensible modular
systems. Software consists of a number of components that are
not linked together until load-time or even run-time. Each soft-
ware component has a well-defined interface that describes the
implemented entities that can be used in other components. The
component interface is encoded in a machine readable format
called a symbol file, the use of which allows consistency of the
component interfaces to be checked both at compile-time and
link-time, thus improving the reliability of the software. Inclu-
sion of new methods and applications is achieved by writing
extra components that simply either ‘plug-in’ to relevant slots
in existing modules, or make use of existing modules, without
requiring any part of the software to be recompiled.

The aim of this paper is to describe how WinBUGS works and
how modern computing concepts, such as object-orientation,
modular programming, and run-time linking, are exploited in
the design of the software. We hope that it also encourages the
reader to consider adopting similar approaches to the solution
of complex statistical problems. The structure of the paper is as
follows. In Section 2 we describe DAGs and the Bayesian sta-
tistical methodology that is particularly suited to their analysis.
Section 3 outlines how WinBUGS satisfies the fundamental re-
quirements of general MCMC software, and Section 4 describes
briefly how models are specified. The basic concepts of object-
oriented programming are described and illustrated in Section 5.
In Section 6 we discuss how the software is organised into a hi-
erarchical collection of subsystems, each of which has a specific
set of responsibilities and comprises a module hierarchy. We
pay particular attention to the Graph subsystem, which provides

the objects used to construct an internal representation of the
model. The various ways of extending the WinBUGS frame-
work are described in Section 7 and a concluding discussion is
given in Section 8. Technical details of the key methods bound
to objects in the Graph subsystem are given in an Appendix,
and full details of model specification and the user-interface
can be found in the documentation provided with the software
(http://www.mrc-bsu.cam.ac.uk/bugs/).

2. The setting

2.1. Graphical models

To illustrate the statistical concepts that WinBUGS exploits we
consider a simple univariate linear regression model. Suppose
we have observations yi measured at xi , i = 1, . . . , N , where the
xi are design-points of the experiment, e.g. observation times,
and are assumed known. If we suppose that a linear relationship
exists then we might assume

yi ∼ N (µi , τ
−1), µi = α + βxi ,

for i = 1, . . . , N . Here α and β are the unknown intercept and
gradient parameters respectively, and τ is the inverse of the resid-
ual variance (also unknown). An alternative representation of
this model is the directed acyclic graph (DAG; see, for exam-
ple, Spiegelhalter 1998) shown in Fig. 1, where each quantity in
the model corresponds to a node and links between nodes show
direct dependence. The graph is directed because each link is
an arrow; it is acyclic because by following the arrows it is not
possible to return to a node after leaving it.

The notation is defined as follows. Rectangular nodes de-
note known constants. Elliptical nodes represent either deter-
ministic relationships (i.e. functions) or stochastic quantities,

Fig. 1. Directed acyclic graph for a simple linear regression
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i.e. quantities that require a distributional assumption. (Note that
WinBUGS is designed for Bayesian models and so unknown pa-
rameters, such as α, β and τ in the above example, are stochas-
tic, because a prior distribution must be assigned to each –
see Section 2.2.1.) Stochastic dependence and functional de-
pendence are denoted by single-edged arrows and double-edged
arrows respectively. Repetitive structures, such as the loop from
i = 1 to i = N , are represented by ‘plates’, which may be nested
if the model is hierarchical.

A node v is said to be a parent of node w if an arrow emanat-
ing from v points to w; furthermore, w is then said to be a child
(or offspring) of v. We are primarily interested in stochastic
nodes, i.e. the unknown parameters and the data. When iden-
tifying probabilistic relationships between these, deterministic
links are collapsed and constants are ignored. Thus the terms par-
ent and child are usually reserved for the appropriate stochastic
quantities. In the above example, the stochastic parents of each
yi are α, β and τ , whereas we refer to µi and τ as the direct
parents.

DAGs can be used to describe pictorially a very wide class of
statistical models. It is when these models become complicated
that the benefits become obvious. DAGs communicate the es-
sential structure of the model without recourse to a large set of
equations. This is achieved by abstraction: the details of distribu-
tional assumptions and deterministic relationships are ‘hidden’.
This is conceptually similar to object-oriented programming, a
subject discussed in Section 5.

In general, a DAG represents a series of conditional indepen-
dence assumptions: for any node v, if the parents are known then
no other nodes provide further information about v, except for
descendants of v (the genetic analogy is clear). Thus

v ⊥⊥ non-descendants[v] | parents[v]

where⊥⊥ denotes ‘is conditionally independent of’. In the above
example yi ⊥⊥ y j | α, β, τ for j 6= i . The conditional indepen-
dencies expressed through DAGs allow properties of the model
to be derived even though no specific probabilistic form has been
specified (Lauritzen et al. 1990, Whittaker 1990, Spiegelhalter
et al. 1993). In the following sub-section (2.2) we show how
DAG representation greatly facilitates the analysis of arbitrarily
complex full probability models.

2.2. Methodology

2.2.1. Bayesian statistics

Suppose we have observed data y and unknown parameters θ .
The Bayesian approach to statistics is to treat all unknown quan-
tities as random variables and assign a prior probability distri-
bution to each. By also specifying a joint probability distribu-
tion for the data, i.e. a likelihood, we obtain a full probability
model for all observable and unobservable quantities. In order
to make inferences about θ we use Bayes’ theorem to construct
the posterior distribution, i.e. the joint distribution of all model

parameters conditional on the observed data:

p(θ | y) ∝ p(y | θ )p(θ ),

where, throughout, p(. | .) and p(.) denote conditional and
marginal probability distributions respectively. Thus the pos-
terior is proportional to the likelihood p(y | θ ) multiplied by the
prior p(θ ). An excellent introduction to Bayesian data analysis
is given by Gelman et al. (1995).

2.2.2. Markov chain Monte Carlo

In many realistic modelling situations the joint posterior dis-
tribution p(θ | y) is high-dimensional (e.g. dim(θ ) = 100’s or
1000’s), complex, and unavailable in closed form. Bayesian
inference entails the evaluation of various summaries of the
posterior, such as moments and quantiles. This requires inte-
gration, with respect to θ , of functions involving p(θ | y); it is
these integrals that until recently have rendered Bayesian analy-
sis problematic. Markov chain Monte Carlo (MCMC) methods
(see, for example, Gilks, Richardson and Spiegelhalter 1996) al-
leviate these difficulties. Integrals are evaluated via Monte Carlo
simulation from a Markov chain that is constructed so that its
stationary distribution is the posterior.

Various algorithms exist for carrying out the required simu-
lations, including Gibbs sampling (Geman and Geman 1984,
Gelfand and Smith 1990), which is particularly useful for
exploiting conditional independence assumptions (see Sec-
tion 2.1). The algorithm proceeds by iterative simulation from
the full conditional distributions of each unknown stochastic
quantity given the current values of all other terms (nodes) in
the model. Numerous applications of Gibbs sampling and other
MCMC techniques can be found in the literature. (A number of
these make use of either the BUGS or WinBUGS software.) The
methodology has now been applied in many fields of research,
such as medicine (Ayanian et al. 1998), financial economics
(Pitt and Shephard 1999), spatial epidemiology (Wakefield and
Morris 1999), and pharmacokinetics (Lunn and Aarons 1998).

2.2.3. DAG factorization

Let V denote the set of all nodes in a DAG. It can be shown
(Lauritzen et al. 1990) that

p(θ | y) ∝ p(θ, y) = p(V ) =
∏
v∈V

p(v | parents[v]). (1)

Not only is this factorization convenient in the sense that it en-
ables arbitrarily complex full probability models to be specified
in terms of simple local components, but it also makes iden-
tification of full conditional distributions straightforward. Let
V \v denote ‘all elements of V except v’. The full conditional
p(v | V \v) is proportional to the product of terms in p(V ) that
contain v:

p(v | V \v) ∝ p(v | parents[v])×
∏

w∈children[v]

p(w | parents[w]).

(2)



328 Lunn et al.

Table 1. Sampling method hierarchy used by WinBUGS. Each method is only used if no previous method in the hierarchy is appropriate

Target distribution Sampling method

Discrete Inversion of cumulative distribution function (trivial)
Closed form (conjugate) Direct sampling using standard algorithms
Log-concave Derivative-free adaptive rejection sampling (Gilks 1992)
Restricted range Slice sampling (Neal 1997)
Unrestricted range Metropolis-Hastings (Metropolis et al. 1953, Hastings 1970)

The first term, i.e. p(v | parents[v]), is referred to as the prior
component and the second, i.e. the product over children[v],
is called the likelihood component. Often these are ‘compat-
ible’ in the sense that the full conditional distribution can be
derived analytically, in which case samples can be generated ef-
ficiently using the appropriate specialized random number gen-
erator (Ripley 1987). For example, a gamma prior for τ in Fig. 1
would combine with the normal likelihood to give a gamma full
conditional for τ . (See Spiegelhalter et al. 1996b, pp. 17, 21, for
tables of distributions and their so-called conjugate priors.) If
for any node the full conditional distribution is not available in
closed form then samples may be obtained by using (2) within a
more general sampling method, such as adaptive rejection sam-
pling (Gilks and Wild 1992) or a Metropolis-Hastings algorithm
(Metropolis et al. 1953, Hastings 1970).

3. Requirements of MCMC software

Here we identify three fundamental requirements of general
MCMC software and describe briefly how they are satisfied by
WinBUGS.

3.1. A wide class of models

The factorization property in equation (1) allows arbitrary DAG
structures to be specified simply by stating the relationship be-
tween each node and its direct parents. WinBUGS provides, via
the BUGS language, a wide range of distributions and functions
(easily incremented – see Section 3.3 below) that can be used
to specify these relationships. From this model specification an
easily manageable object-oriented representation of the model
is constructed. This internal representation is also a collection
of simple local components – it comprises an indexed list of ob-
jects, each of which corresponds to a particular node in the DAG
and can access the objects that correspond to its direct parents.

3.2. Efficient sampling

WinBUGS is an ‘expert system’ (although no explanation facil-
ities are required) that attempts to utilise the most appropriate
sampling scheme for each stochastic node. In cases where a
node’s full conditional distribution is available in closed form
WinBUGS can usually identify that closed form and implement
the appropriate specialized sampling method. Where a node’s

full conditional is not (known to be) available in closed form
the software examines the circumstances and chooses an ap-
propriate general sampling method. Table 1 shows, in order of
precedence, the five types of sampling method currently used
by WinBUGS and the types of distribution for which they are
employed.

The way in which object-orientation facilitates this ‘expert
system’ behaviour is discussed in Section 6 and in the Appendix.

3.3. Extensibility

General software should be extensible, i.e. users should be able
to add to its capabilities. Users of WinBUGS may extend the
BUGS language by incorporating new distributions and/or new
functions into the system. It is also possible to incorporate new
MCMC sampling techniques and to write user-interfaces that
deal efficiently with specific types of model. None of these types
of software extension require access to, or even recompilation
of, any part of the WinBUGS source-code. This is due to the
component-oriented design of the software and the fact that it
makes use of a powerful computing concept known as run-time
linking, where software components are loaded on demand. Ex-
tensibility is further discussed in Section 7.

4. Specification and analysis of graphical
models

In WinBUGS models may be specified either textually or graph-
ically. (In both cases, data and initial values for the unknown
parameters are specified either in an S-Plus-like format or in
rectangular array format.) Textual specification is achieved us-
ing a declarative language known as the BUGS language. The
following code defines the likelihood for the regression problem
depicted in Fig. 1 (priors are omitted for brevity).

for (i in 1:N) {
y[i] ~ dnorm(mu[i], tau)
mu[i] <- alpha + beta * x[i]

}

As is customary the ~ notation denotes ‘is distributed as’. This
must always be followed by a distribution identifier, in this
case dnorm(.,.). (Note that in WinBUGS normal distribu-
tions are parameterised in terms of precisions rather than vari-
ances.) The <- notation is read ‘gets’ and identifies logical (or
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Fig. 2. Screen dump from a WinBUGS session featuring a DoodleBUGS graph for the Hepatitis B immunization model discussed in Spiegelhalter
et al. (1996a). The data, y[i,j], are serial log-antibody-titre measurements obtained from (K = 106) Gambian infants after Hepatitis B immu-
nization. The graph represents a hierarchical random effects model, with i indexing infants and j indexing repeated measures on each infant. The
y[i,j] are assumed independent conditional on their mean mu[i,j] and on a parameter tau that represents the precision of the measurement
process. Observed baseline log-titre values y0[i] are believed to be subject to the same sources of measurement error and are thus also dependent
on tau . Each mu[i,j] is a deterministic function of log.time[i,j], infant-specific intercept and gradient parameters (alpha[i] and beta[i]
respectively), an ‘errors-in-variables’ covariate (‘true’ baseline log-titre: mu0[i]), and its associated coefficient gamma. Here a linear form is
chosen (mu[i,j] <- alpha[i] + beta[i] * log.time[i,j] + gamma * mu0[i]), but linearity is by no means essential; a logical node’s
functional form is entered at the top of the graph when the node is selected. The alpha[i], beta[i], and mu0[i] are independently drawn from
population distributions parameterised by: alpha0 and tau.alpha; beta0 and tau.beta; and theta and phi, respectively

deterministic) relationships. The BUGS language is described
in detail in Spiegelhalter et al. (1996b).

Graphical specification is achieved via the DoodleBUGS in-
terface. Figure 2 shows the DoodleBUGS equivalent of the
Hepatitis B immunization model discussed in Spiegelhalter et al.
(1996a), which combines a random effects growth curve model
for log-antibody-titre with measurement error on a covariate
(‘true’ baseline log-titre). Nodes, directed links, and plates are
drawn using simple mouse operations. Details of distributional
assumptions or logical functions appear at the top of the graph
when a node is selected (as shown for y[i,j]); these may be
edited by the user.

Figure 2 also shows some results based on iterations 2001–
12000 of an analysis using the depicted model: a ‘time series’
(or trace) plot, a kernel posterior density estimate, the autocor-
relation function, and various summary statistics are shown for
gamma, the coefficient associated with true baseline log-titre val-
ues. (Note that various other types of textual and graphical out-
put are also available.) Such output can be generated at any time
during the analysis – the relevant posterior samples are simply
extracted from the appropriate monitor object (see Section 6.4)
and manipulated accordingly.

From an abstract graphical representation of the model
it is straightforward to ‘read off’ conditional independence
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assumptions and thus determine the mechanism for construct-
ing each full conditional distribution, irrespective of the un-
derlying assumptions. For example, in Fig. 2 we can see that
the full conditional for gamma is given by the prior for gamma
multiplied by the density of each stochastic child, y[i,j]
(i= 1, . . . , K, j= 1, . . . , T). (For the analysis shown gamma is
assigned a normal prior and each y[i,j] is assumed to have
arisen from a normal distribution with a mean mu[i,j] that
is a linear function of gamma – hence the full conditional for
gamma is normal.) WinBUGS uses object-orientation, which is
discussed below, to exploit this fact.

5. Object-oriented programming

Detailed introductions to object-oriented programming can be
found in Chapter 4 of Cornell and Horstmann (1997) and
Chapter 12 of Reiser and Wirth (1992). Put simply the generic
problem is to perform various operations on a collection of het-
erogeneous entities (or objects). Consider, for example, a simple
graphics editor that draws a number of figures on the screen,
e.g. rectangles, ellipses, lines. The first task is to identify a ba-
sic structure and functionality that is common to all objects and
define an abstract base type that reflects this. Heterogeneity is
handled by extending the base type.

An important feature of object-orientation is that types may
have procedures bound to them – these are known as methods.
For the graphics editor a base type named Figure could be de-
fined. There would be no structure common to all objects but
a common functionality could be imposed by binding various
procedures to this base type. For example, each object of type
Figure should be able to draw itself, via a method called Draw,
say. For the base type this functionality is simply declared (ab-
stractly): the details cannot yet be specified because, for example,
rectangles and ellipses are drawn differently.

When a base type is extended, the extension inherits all of
the base type’s properties, i.e. its structure and methods. In ad-
dition, an extension may have private data added to it, such as
‘fields’ not contained in the inherited structure, details of in-
herited methods, and new methods. Extensions of the base type
may also be extended, and so on. This results in a type hierarchy,
which culminates in a set of concrete types, i.e. where all meth-
ods have been fully defined. For example, we could extend the
base type Figure to Rectangle, Ellipse, and Line. These
could be made concrete, by incorporating basic properties such
as positional coordinates and dimensions into the structure as
static fields, which would then be used to define the methods
(e.g. Draw) for each extension. Alternatively, we may wish to
extend Line to Arrow, etc.

An object is an instance (in the computer’s memory) of a
concrete type. It may be accessed via a variable of that type,
or, alternatively, via any variable whose type the concrete type
inherits from. For example, an object of type Rectangle may
be assigned to a variable of type Figure; a call to this vari-
able’s Drawmethod would result in a rectangle being drawn even

though the variable’s type is abstract (private data are assigned
dynamically). A principal benefit of this is that it enables the pro-
grammer to write very general procedures that operate abstractly
on all objects without having to anticipate all the extensions.

6. Structure of WinBUGS

6.1. Modules

WinBUGS was developed using BlackBox Component Builder
(Oberon microsystems, Inc., Zurich: http://www.oberon.
ch), so-called because of its component-oriented nature (see
Pfister 1997 for details). This is a rapid application development
tool designed to extend the BlackBox Component Framework,
which is an independently extensible class library. Programming
is conducted using the Component Pascal language, which is a
hybrid that combines procedural, object-oriented, and modular
paradigms.

Software written using BlackBox is organised into modules.
The module is the basic unit of compilation and typically con-
tains one or more type definitions, including the details of type-
bound procedures where appropriate. These types can be ex-
ported along with constants, variables, and procedures. Exported
items constitute an interface via which different modules may
interact. In BlackBox, interfaces play a very central role. Indeed,
when a module is compiled a description of its interface is au-
tomatically created by the compiler. This can be compared to a
contract (Meyer 1997, Chapter 11) between the module and its
clients, i.e. other modules that make use of the exported items. A
good contract should be clear, complete, and concise; it should
not be ambiguous or lay down any irrelevant details, or one party
may make false assumptions about the behaviour of the other.
The interface summarises, accurately and concisely, the services
that client modules can expect, without providing the details of
how they will be carried out.

In short, a module is a ‘black box’ that interacts with its envi-
ronment only through its interface. It shares its data structures
with arbitrary other modules, about which it knows nothing. The
most obvious benefit of modular programming is that by break-
ing down a large and complex problem into smaller problems
that can be solved independently, the overall problem becomes
substantially more manageable. However, the fact that interac-
tion between modules only occurs through simple interfaces is
also very important. So long as the interface remains the same a
module can be replaced by a newer version without affecting the
remainder of the software, which greatly facilitates evolution.
This is the main reason for ‘hiding’ a module’s implementation
details: otherwise, changes may render assumptions based on an
earlier version invalid.

6.2. WinBUGS architecture

A collection of modules that have related functionality is re-
ferred to as a subsystem. Figure 3 depicts the architecture of
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Fig. 3. Architecture of WinBUGS. The shaded region shows the interaction between the six primary subsystems (Graph, Updater, Monitors, Bugs,
Samples, and Doodle). The clear region shows how a specialized application, namely PKBugs, fits in. The depicted shapes and sizes of subsystems
are meaningless – it is the hierarchical structure that is important. Arrows denote one-way communication between subsystems. If one subsystem
points to another then the former makes use of the latter; moreover, the latter is unaware of the former’s existence

WinBUGS: it shows how the six primary subsystems interact.
The arrows show one-way communication between subsystems.
If one subsystem points to another then the former makes use
of the latter. Moreover, the latter is unaware of the former’s ex-
istence. Also shown are two subsystems of a specialized appli-
cation, namely PKBugs (Lunn et al. 1998; http://www.med.
ic.ac.uk/df/dfhm/pkbugs web/home.html), designed for
analysis of population pharmacokinetic data.

In this section we describe briefly the role of each WinBUGS
subsystem.

(i) Graph. Modules that constitute the Graph subsystem col-
lectively export a rich type hierarchy whose base type cor-
responds to a generic node in a graphical model. Objects
of these types are used to construct an internal representa-
tion of the model. The Graph subsystem is entirely unaware
of the other five subsystems – it merely provides ‘building
blocks’ along with some rules as to how these building
blocks should interact. The Graph subsystem is discussed
in detail in the following sub-section (6.3).

(ii) Updater. The Updater subsystem provides objects that can
‘update’, via MCMC simulation, a node corresponding to
an unknown parameter in the graphical model, i.e. they ob-
tain a sample from the node’s full conditional distribution.

(iii) Monitors. The Monitors subsystem defines the base types

of objects that are responsible for storing the samples drawn
from a node’s full conditional distribution.

(iv) Bugs. Bugs has a number of responsibilities: it defines the
‘grammar’ for model specification, i.e. the BUGS language;
parses the model specification; assembles (via Graph) and
stores the internal representation of the model; provides a
mapping between variables in the statistical model and the
objects that represent them; and drives the MCMC algo-
rithm.

(v) Samples. The Samples subsystem interacts with both
Bugs, where details of the model are stored, and Monitors
to produce textual and graphical output, such as summary
statistics and posterior density plots.

(vi) Doodle. Doodle is a graphical interface that allows users
to specify models via DAG diagrams. There is a one-to-one
mapping between elements of the DAG and elements of the
BUGS language, and so communication of the model from
Doodle to Bugs is straightforward.

6.3. The Graph subsystem

6.3.1. Module and type hierarchy

By convention module names are prefixed by the name of the
subsystem to which the module belongs. Thus all modules
in the Graph subsystem begin with Graph, e.g. GraphNodes,



332 Lunn et al.

Fig. 4. Module hierarchy of the Graph subsystem and how Bugs makes use of it. Notation as in Fig. 3

GraphStochastic. Figure 4 shows the module hierarchy of
the Graph subsystem and how the Bugs subsystem makes use
of it.

The Graph subsystem defines a type hierarchy for represent-
ing nodes in a DAG. The base type Node is defined in mod-
ule GraphNodes and is referred to as GraphNodes.Node (by
convention). GraphLogical.Node, GraphConst.Node, and
GraphStochastic.Node are extensions that represent logical,
constant, and stochastic nodes respectively. Constant nodes are
not extensible. Logical nodes are extended to particular classes
of functions, such as linear predictors (module GraphLinpred)
and sums of nodes (module GraphSummation). These are
typically known to have convenient properties with respect
to the derivation of (or, more generally, sampling from)
full conditional distributions. They may, however, simply aid
model specification. Stochastic nodes may be either univari-
ate or multivariate (e.g. Wishart), and so GraphStochastic.
Node is extended to GraphStochastic.Univariate and
GraphStochastic.Multivariate. These are further ex-
tended, to concrete types, in numerous distribution-specific mod-
ules, such as GraphNormal and GraphWishart. Note from
Fig. 4 that the Bugs subsystem is unaware of distribution-specific
(and function-specific) modules and their respective types; it
only requires knowledge of the abstract types.

6.3.2. Graph construction

Here we describe how the internal representation of the graphical
model is constructed. We first introduce the Name data structure,

which is defined in module BugsNames. For each variable in
the statistical model, a variable of type BugsNames.Name is
used to store its user-specified name, information regarding its
dimensions, and the collection of node objects that represent
it. This provides a mapping between the textual and internal
representations of the model, so that objects corresponding to
particular nodes in the graph can be located easily. (The user’s
model nomenclature is used to identify components of the inter-
nal representation because the arbitrary structure of the model
cannot be anticipated.) Module BugsIndex stores a list of the
BugsNames.Name variables used to represent the model.

To create node objects we make use of factory objects. Mo-
dule GraphNodes exports an abstract type named Factory,
which has a single method, New; a variable of this type is also
exported. Each distribution-specific and function-specific mod-
ule in the Graph subsystem exports a variable of a type that
extends GraphNodes.Factory. This object’s New method cre-
ates and returns (dynamically) an instance of the appropriate
distribution-specific or function-specific node type. Thus a node
object can be created simply via a call to the New method of the
appropriate module’s factory object, and so details of the node
type, including the type itself, can be completely hidden so that
the module is entirely ‘black box’ in nature.

Bugs uses these factory objects as follows. First, the user’s
model specification is parsed and a ‘tree’ representation of the
model is created. The Bugs subsystem contains a resource file
that defines the grammar for model specification. This is sim-
ply an editable text file containing identifiers for each available
distribution and function, e.g. dnorm(s,s) denotes a normal
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distribution, which should be specified using two scalar (s) pa-
rameters. Alongside each identifier is a procedure call with the
syntax Module.Install, where Module is the name of the
module in which the appropriate concrete node type is defined
(e.g. GraphNormal) and Install is a simple procedure that sets
the factory object in GraphNodes equal to the factory object in
Module. Thus when the former’s Newmethod is called the appro-
priate node object is returned dynamically, and so Bugs requires
no knowledge of distribution-specific or function-specific mod-
ules (which provides enormous scope for extending the software
– see Section 7). Node objects are created simply by ‘picking
up’ and executing commands in the resource file and by then
using the factory object exported by GraphNodes.

Once all node objects have been created and incorporated
into their respective BugsNames.Name variables, and once these
have been stored within BugsIndex, it is necessary to define the
directed links between nodes in the graph. This is achieved by
each node object incorporating pointers to its direct parents. The
names of direct parents are determined by referring back to the
tree representation of the model created by the parser. These are
used to locate parent objects, which are passed to the relevant
node via its Set method (see Appendix).

6.3.3. Methods

A principal aim of any MCMC software should be to make use
of sampling techniques that are both efficient and reliable. In
WinBUGS, the methods attached to node objects allow the
software to choose and employ the most appropriate sampling
scheme for each full conditional distribution. They can be cat-
egorised as follows: Topology – methods that define or inform
about the structure of the graph; Classification – methods that
navigate the graph and provide information about how a stochas-
tic node’s full conditional distribution might be classified; and
Updating – methods that evaluate functions of interest to updater
objects, i.e. objects that obtain samples from the full conditional
distributions. Some technical details of particularly important
methods are provided in the Appendix.

6.4. Updaters and monitors

Updater objects, whose base type (Updater) is defined in mod-
ule UpdaterUpdaters, are responsible for carrying out the
MCMC simulation: they update the graph by calculating new
values for nodes. There are updaters for specific distributions,
i.e. when a node’s full conditional can be expressed in closed
form, and general updaters, such as Metropolis-Hastings sam-
plers and ‘slice’ samplers (Neal 1997). The creation of specific
updater objects is analogous to the creation of node objects. Once
the appropriate node’s full conditional distribution has been clas-
sified, an Install procedure is executed from a resource file.
This sets the factory object in module UpdaterUpdaters equal
to the appropriate updater-specific factory object; the former can
thus be used to create specific updater objects without knowl-
edge of the modules in which they are defined.

Fig. 5. 3-D representation of the graph (comprising node objects) and
associated updater and monitor objects. There are three layers that
extend into the page: updaters (white) form the top layer; nodes (light
grey) form the second; and the third comprises monitors (dark grey).
Arrows denote pointer variables that link the objects together. Node-to-
offspring pointers are not shown. Monitor-to-node pointers are ‘dotted’
simply to give the impression of depth

Each updater object incorporates a pointer to the node that
it updates. Through this the updater can access relevant local
information about the graph. To enable this coupling the up-
dater has a method called Init, which receives the appropriate
node object as an argument – this is analogous to a node’s Set
method.

The most important procedure bound to updater objects is
the MCMC method. This draws one random sample from the
node’s full conditional distribution and updates the node’s value
field (see Appendix) accordingly. For general updaters the MCMC
method is straightforward to define, because no special consid-
erations are required. However, when the full conditional distri-
bution can be expressed in closed form the parameters of that
closed form must somehow be derived. This is done by making
use of the LikelihoodForm method of each of the attached
node’s offspring (see Appendix).

Monitor objects (whose base types are defined in the Monitors
subsystem) are also coupled to nodes via pointer variables. At the
end of each iteration of the Gibbs sampler, each monitor object
accesses the node attached to it and stores its current value in
an array field. Whereas updaters are automatically created by
the Bugs subsystem for every (unobserved) stochastic node in
the graph, monitors are assigned to either stochastic or logical
nodes by the user during run-time. Figure 5 depicts the internal
representation of the graph, comprising node objects, along with
associated updater and monitor objects.

7. Extensibility

The BlackBox Component Builder extends the BlackBox Com-
ponent Framework to provide a user-interface that enables rapid
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application development: it incorporates a powerful text editor,
for example, and to some extent automates the programming of
many of the essential features of modern software, e.g. dialogue
boxes. The various subsystems that constitute the WinBUGS
software are simply further extensions of this framework. The
Graph subsystem provides building blocks that are generally
useful for representing Bayesian models; Updater and Monitors
provide building blocks that are generally useful for analysing
these models via MCMC techniques, and so on. In this sense
WinBUGS is a component framework in its own right.

The software has been designed so that users can extend it,
with minimal effort, to meet their own requirements. All that
is required is some familiarity with the Component Pascal lan-
guage and the structure of the WinBUGS framework (this paper
addresses the latter issue). There are three main ways of extend-
ing the framework: (i) new types of logical node; (ii) new types
of stochastic node; and (iii) new MCMC updating algorithms.

In the first two cases, the user must write a single mod-
ule that defines an extension of either GraphLogical.Node
or GraphStochastic.Node. This module must also define an
extension of GraphNodes.Factory and a simple Install pro-
cedure that sets the global factory object in module GraphNodes
equal to an instance of the new factory object type. A call to the
Install procedure should be included in the resource file that
defines the grammar for model specification, along with an iden-
tifier for the new node type. This procedure call can be ‘picked
up’ and executed by WinBUGS even though the software is un-
aware of the new module’s existence; thus WinBUGS can make
use of new node objects without having to anticipate them. This
is made possible by the fact that BlackBox can load modules on
demand during run-time – this is known as run-time linking.

New updater objects are integrated into the framework in
an analogous fashion, by extending both UpdaterUpdaters.
Updater and UpdaterUpdaters.Factory, exporting a simple
Install procedure, and making modifications to the appropri-
ate resource file.

Another way of extending WinBUGS would be to write an ap-
plication (or user-interface) for users with specialized require-
ments, e.g. when models are best specified using approaches
other than the BUGS language. Such an application could merely
relieve the Bugs subsystem of its parsing and graph assembly
responsibilities. The new parsing process would typically lead to
a convenient (preliminary) internal representation of the model
that could be transposed into WinBUGS objects.

The BugsNames.Name data structure provides a valuable
medium for communicating models to the Bugs subsystem.
Module BugsIndex can be instructed, by any application, to
store a graphical model comprising BugsNames.Name vari-
ables. Thus, a specialized application may create node objects
by making use of the Graph subsystem, organise them into
BugsNames.Name variables, and then make Bugs aware of the
graph by passing these to it. Once the directed links in the graph
have been defined (via each node’s Set method) the Bugs sub-
system has all the information necessary to navigate the graph,
build the required full conditional distributions, and allocate

appropriate updater objects. Hence, WinBUGS’ Bayesian mod-
elling capabilities could then be fully exploited to conduct the
remainder of the analysis.

To date, two such applications have been developed, namely
DoodleBUGS (defined by the Doodle subsystem) and PKBugs
(Lunn et al. 1998). The latter was designed for the analysis of
population pharmacokinetic data. Population pharmacokinetic
models are generally nonlinear and typically complex. Indeed,
the complexity of dosing histories in observational studies is of-
ten such that model specification via the BUGS language would
be infeasible. Instead, PKBugs allows the user to specify the
model using an established shorthand notation for data entry
(Beal and Sheiner 1992) along with a series of simple dialogue
boxes and menu commands.

8. Discussion

This paper illustrates how modern computing concepts can be
used to solve, elegantly and efficiently, extremely difficult prob-
lems. Object-orientation is the key to exploiting the general prop-
erties of DAGs so that the software can deal efficiently with
arbitrarily complex models. The component-oriented design of
the software improves its reliability and renders it easily exten-
sible. The fact that modules can be loaded on demand (i.e. at
run-time) means that new features can be added without having
to recompile any part of the existing software.

Although WinBUGS has been designed primarily for DAGs,
other types of graphical model, such as conditional autore-
gressive structures with undirected links (Besag et al. 1995;
Spiegelhalter, Thomas and Best 1996), are also permissible.
These have somewhat less convenient factorization properties
but are still quite tractable.

Currently WinBUGS can only perform multivariate (or
‘block’) updating when it can derive the appropriate full con-
ditional distribution in closed form, e.g. Wishart. Multivariate
updating can greatly improve the overall efficiency of the MCMC
simulation, and a future version of the software is intended to em-
ploy general multivariate sampling techniques, e.g. Metropolis-
Hastings, for any suitable block of nodes. Apart from this modi-
fication, work on the core of the WinBUGS framework has now
been completed. Future work will largely entail extension of
this core and the (further) development of specialized applica-
tions, such as PKBugs and GeoBUGS; GeoBUGS will facilitate
the specification of spatial models for disease mapping and re-
lated applications, and will provide a graphical interface for map
display and interpretation of results. It is anticipated that Java
versions of all WinBUGS-related software will be available in
the near future, so that they may be run on Unix systems.

An educational version of WinBUGS is available at
http://www.mrc-bsu.cam.ac.uk/bugs/. This can be used
to analyse numerous example problems and general problems
of limited size for evaluation purposes. All documentation and
examples are packaged as part of the software. Currently, a full
version can be obtained free of charge via registration. Table 2
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Table 2. Distribution of registered WinBUGS users (as at July 1999) by geographical location, type of use, and affiliation

Location Users Type of use Users Affiliation Users

North America 1064 Educational 1303 University 1436
Britain 336 Medical 616 Not-for-profit 279
Rest of Europe 481 Environmental 143 Company 277
Australia & New Zealand 119 Industrial 103 Personal 138
Rest of World 224 Financial 59 Other 94

shows the distribution (as at July 1999) of over 2000 registered
users worldwide, by geographical location, type of use, and affil-
iation. The software is primarily used in English-speaking coun-
tries for educational purposes in university institutions, although
over 40% of all usage is for ‘real-life’ applications.

Appendix: Methods bound to node objects

Of the 10 methods bound to GraphNodes.Node, three are par-
ticularly important. These are shown along with their categori-
sations in the top part of Table 3 and are described below.

(i) Set. Each distribution-specific and function-specific node
object incorporates pointers to its direct parents. These
define the local structure of the graph and are assigned using
the Set method. For each node the Bugs subsystem locates
the objects that correspond to its direct parents. These are
then passed to the node as arguments to its Set method
and the node incorporates them into its structure.

(ii) Parents. This method returns a list of the node’s stochas-
tic parents. Once the Set method has been called, a node
has access to its direct parents. For each of these a type test
is made. If the parent is stochastic (GraphStochastic.
Node) then it is added to the list. If the parent is con-
stant (GraphConst.Node) then it is ignored. If the parent is

Table 3. Important methods (and their categorisations) bound to the
types GraphNodes.Node and GraphStochastic.Node

Type {static fields} Methods Use

GraphNodes.Node Set Topology
{no static fields} Parents Topology

Value Updating
GraphStochastic.Nodea BuildLikelihoodb Topology
value: REAL;
offspring: List of
GraphStochastic.Node;

properties: SET


ClassLikelihood

ClassPrior

LikelihoodForm

Likelihood

Classification
Classification
Updating
Updating

Prior Updating
Conditionalb Updating

aGraphStochastic.Node inherits all of GraphNodes.Node’s meth-
ods and has numerous additional methods.
bDetails of method specified at abstract level, in module Graph-

Stochastic.

logical (GraphLogical.Node) then recursion is used: the
parent’s Parents method is called, and so on. Recursion in
each branch ceases when a stochastic or constant node is
found – this is added to the list if stochastic.

(iii) Value. The Valuemethod returns the node’s current value.
For logical nodes this is evaluated using the parents’ current
values. For stochastic nodes the real number stored in the
value field is returned (see below).

Extensions of GraphNodes.Node inherit all of its methods.
GraphLogical.Node has two additional methods. One of these
is Mapping, which plays an important role in the classifica-
tion of full conditional distributions and is discussed below.
GraphStochastic.Node has an additional 20 methods. Those
of particular importance are shown in the lower part of Ta-
ble 3 and are also discussed below. This type’s static fields are
described as follows: value stores the node’s current value;
offspring is a list of GraphStochastic.Node objects that
correspond to the node’s stochastic children; and properties
is a set of properties of the node – any of a number of integer
constants, such as data and censored, exported by module
GraphStochastic can be included in the properties field.

(iv) BuildLikelihood. The BuildLikelihoodmethod ob-
tains the node’s stochastic parents via the Parents
method and adds the node to the offspring field of each.
For example, a call to the BuildLikelihood method
of yi in Fig. 1 would result in yi being added to the
offspring fields of α, β, and τ . Module BugsCompiler
exports a procedure that calls BuildLikelihood for
each stochastic node in the graph, in order to fill the
offspring fields of all stochastic nodes. (Only children
that contribute to a node’s likelihood component are added
to its offspring field, i.e. nodes used for prediction are
excluded.)

(v) ClassLikelihood. This method is instrumental in the
classification of full conditional distributions. Suppose
we are interested in the full conditional distribution of
node. For each element of node.offspring (denoted
by child) we call child.ClassLikelihood(node),
i.e. node is an argument to the ClassLikelihood
method. This classifies the density of child as a function
of node, e.g. the normal density for each yi in Fig. 1 has
the form of a gamma density when considered as a func-
tion of τ . Often, child is not immediately aware of how
it is related to its stochastic parents (e.g. node) because
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some, or all, of its direct parents are logical. In this case
each logical parent’s Mapping method is used to classify
the parent as a function of node. This method works re-
cursively up the graph (i.e. against the arrows), building a
functional classification along the way, until either node
or one of the other stochastic parents is located.

Some functions have convenient properties in this re-
spect. For example, the density of each yi in Fig. 1, when
considered as a function of either α or β, is normal, be-
cause µi is linear in both α and β. (If we were to assign
normal priors toα andβ then their full conditionals would
therefore also be normal.) Module GraphRules exports
(as integer constants) the possible classifications for func-
tions and densities, along with numerous rules for com-
bining them. Density classifications include closed forms,
such as normal and gamma, and more general forms,
such as logCon (log-concave). This method is central
to the ‘expert system’ described in Section 3.2, which
enables WinBUGS to perform efficient sampling for
arbitrary models.

(vi) ClassPrior. The ClassPrior method simply returns a
classification for the node’s assumed distribution in the
full probability model. This is used in conjunction with
ClassLikelihood (for each child) to classify the node’s
full conditional distribution.

(vii) LikelihoodForm. In cases where a stochastic node’s
full conditional distribution is available in closed form
this method is used to derive the parameters of that
closed form. It is called for each element of the node’s
offspring field and returns the child’s contributions to
the full conditional parameters. The form of these con-
tributions depends on the type of full conditional distri-
bution, e.g. normal, gamma; this information is passed to
the LikelihoodForm method via its argument list.

If we were to assign a gamma prior, Ga(a, b) say, to
τ in Fig. 1 then its full conditional would be Ga(a +∑N

i=1
1
2 , b +∑N

i=1
1
2 (yi − µi )2). For the derivation of

this full conditional, the LikelihoodForm method of
each yi (the offspring of τ ) would return 1

2 and the cur-
rent value of 1

2 (yi −µi )2 as the contributions of that child
to the shape and inverse-scale parameters respectively.
For the derivation of a normal full conditional, e.g. for
α or β (assuming normal priors), the LikelihoodForm
method of each yi (also the offspring ofα andβ) would re-
turn (current values of) other appropriate functions. These
contributions are combined, in a way that befits the cir-
cumstances, by updater objects (see Section 6.4).

(viii) Likelihood, Prior and Conditional. Conditional
evaluates the natural logarithm of the node’s full con-
ditional density, up to proportionality. This is required
to perform MCMC simulations in cases where the full
conditional cannot be expressed in closed form. First the
node’s Prior method is called. This returns the node’s
log-density evaluated at the node’s current value (with
the parents also at their current values); for efficiency,

only terms involving the node itself are used in the calcu-
lation. The Likelihood method is identical except that
all terms are used in the calculation. This is called for
each element of the node’s offspring field. The log-full
conditional (up to proportionality) is given by the sum of
these density evaluations.

Methods BuildLikelihood and Conditional are identical
for all stochastic nodes and are thus defined at an abstract level,
in module GraphStochastic. The other methods in the lower
part of Table 3 are distribution-specific.
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